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II. Improving end-to-end speech recognition (15*3=45 min)

1. Data-efficiency

2. Multilingual and crosslingual ASR

3. Language Model Integration for Speech Recognition

III. Open questions and future directions + QA (15 min)

QA + break 15-min



Tower of Babel 巴比塔
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There are 7,139 living human languages distributed in 142 different language families.

截至2021年11月20日，中国与141个国家签署了“一带一路”合作文件



ASR brief history
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1970 – 2010: 1st Generation

HMM • F. Jelinek, “Continuous speech recognition by statistical methods”, Proc. of the IEEE, 1976.
• J. Baker, “The DRAGON system--An overview”, T-ASSP, 1975.

GMM • B.H. Juang, “Maximum-likelihood estimation for mixture multivariate stochastic observations of Markov 
chains”, AT&T Technical Journal, 1985.

N-gram,
Smoothing

• F. Jelinek & R.L. Mercer, “Interpolated estimation of Markov source parameters from sparse data”, Proc. 
Workshop on Pattern Recognition in Practice, 1980.

• F. Jelinek, “The development of an Experimental Discrete Dictation Recognizer”, Proc. of the IEEE, 1985.

Tree based state tying • S. Young, J.J. Odell, P.C. Woodland, “Tree-based state tying for high accuracy acoustic modeling”, HLT 
workshop, 1994.

MAP,
MLLR

• C.H. Lee, C.H. Lin, B.H. Juang, “A study on speaker adaptation of the parameters of continuous density 
hidden Markov models”, T-IP, 1991.

• C.J. Leggetter & P.C. Woodland, “Maximum likelihood linear regression for speaker adaptation of continuous 
density hidden Markov models”, Computer Speech and Language, 1995.

fMLLR, Speaker 
adaptive training

• M.J.F. Gales, “Maximum likelihood linear transformations for HMM-based speech recognition”, Computer 
Speech and Language, 1998.

WFST • M. Mohri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 1997.
• M. Mohri, F. Pereira, and M. Riley, “Speech Recognition with Weighted Finite-State Transducers”, 2008.

Discriminative
Training, MMI, MPE

• D. Povey, “Discriminative training for large vocabulary speech recognition”, Ph.D. dissertation, 2003.

HMM

WFST

欧智坚，“第三代语音识别技术初探”，全国声学大会, 2021/3/29, 上海



ASR brief history
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2011 – now：2nd Generation

DNN-HMM • A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition”, NIPS Workshop Deep 
Learning for Speech Recognition and Related Applications, 2009.

• G. Dahl, et al, “Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition”, T-ASLP, 2012.
• F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-dependent deep neural networks”, Interspeech, 2011.
• D. Povey, et al, "Purely sequence-trained neural networks for ASR based on lattice-free MMI", Interspeech 2016.

NN-LM • Bengio, et al, “A Neural Probabilistic Language Model”, NIPS, 2001.
• Mikolov, et al, "Recurrent neural network based language model", Interspeech, 2010.

CTC • A. Graves, et al, “Connectionist temporal classification: Labelling unsegmented sequence data with recurrent 
neural networks”, ICML, 2006.

• H. Sak, et al, “Learning acoustic frame labeling for speech recognition with recurrent networks”, ICASSP, 2015.
• Y. Miao, et al, “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding”, ASRU, 2015.

Attention seq2seq • D. Bahdanau, et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
• J. K. Chorowski, et al, “Attention-based models for speech recognition,” NIPS, 2015.
• W. Chan, et al @ google, “Listen, attend and spell: A neural network for large vocabulary conversational speech recognition”, ICASSP, 2016.

RNN Transducer • A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on 
Representation Learning.

• E. Battenberg, et al @ Baidu, “Exploring neural transducers for end-to-end speech recognition”, ASRU 2017.
• K. Rao, et al @ Google, “Exploring architectures, data and units for streaming end-to-end speech recognition with RNN-transducer”, ASRU 2017

Transformer • A. Vaswani, et al @ google, "Attention Is All You Need", NIPS, 2017.

CRF • H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

欧智坚，“第三代语音识别技术初探”，全国声学大会, 2021/3/29, 上海



New-generation ASR
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1970 1980 1990 2000 2010 2020 2030 2040 2050

HMM

GMM

N-gram,
Smoothing

Tree based state tying

MAP,
MLLR

fMLLR, Speaker 
adaptive training

WFST

Discriminative
Training, MMI, MPE

DNN-HMM

NN-LM

CTC

Attention seq2seq

RNN Transducer

Transformer

CRF

Data-efficient

AutoML

Trustworthy AI

• Greater representational capability of DNNs 算法
• Larger amounts of labeled speech data for supervised training 数据
• Powerful hardware such GPUs 算力

欧智坚，“第三代语音识别技术初探”，全国声学大会, 2021/3/29, 上海

noises, 
accents, 
languages, 
scenarios, 
domains,
...
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Model

Learning

Inference
Human knowledge

+ Data

𝑝 𝑥, ℎ; 𝜃 : Generative model, e.g., Hidden Markov Model (HMM)

𝑝 ℎ|𝑥; 𝜃 : Discriminative model, e.g., Conditonal Random Field (CRF)

𝑝 ℎ|𝑥 ; 𝜃

Probabilistic Framework

We need probabilistic models, besides neural nets.



Probabilistic Graphical Modeling (PGM) Framework 

• Directed Graphical Models / Bayesian Networks (BNs)
 Self-normalized/Local-normalized

 e.g. Hidden Markov Models (HMMs), Neural network (NN) based 
classifiers, Variational AutoEncoders (VAEs), Generative Adversarial 
Networks (GANs), auto-regressive models (e.g. RNNs/LSTMs)
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• Undirected Graphical Models  / Random Fields (RFs) / Energy-based models

 Involves the normalizing constant 𝑍 / Globally-normalized

 e.g. Ising model, Conditional Random Fields (CRFs)

x1

x4

x2

x3

x1

x4

x2

x3

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝑝 𝑥1 𝑝 𝑥2|𝑥1 𝑝 𝑥3|𝑥2 𝑝 𝑥4|𝑥1, 𝑥3

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 =
1

𝑍
Φ 𝑥1, 𝑥2 Φ 𝑥2, 𝑥3 Φ 𝑥3, 𝑥4 Φ 𝑥1, 𝑥4



DGM example - Neural Net (NN) based classifier 

10

𝑥

𝑦

Consider observation/features 𝑥 ∈ ℝ𝑑, class label  𝑦 ∈ 1,⋯ , 𝐾

• Multi-class logistic regression 

𝑝 𝑦 = 𝑘|𝑥 =
𝑒𝑥𝑝 𝑧𝑘

σ𝑗=1
𝐾 𝑒𝑥𝑝 𝑧𝑗

≜ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑘
where 𝑧𝑘 = 𝑤𝑘

𝑇𝑥 + 𝑏𝑘 , 𝑘 = 1,⋯ , 𝐾, 
often called logits

𝑥

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑝 𝑦|𝑥
GM Representation Computational Graph Representation

2-layer NN 3-layer NN
𝑥 𝑥

1-layer NN

(NNs as feature extractors)

logits

logits

logits



HMM Viewed as Directed Graphical Model
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t+1tt-11

xt+1xtxt-1x1

...

...

T

xT

...

...

The joint probability distribution of a hidden Markov model (HMM) :

State Initial 
Distr.

State Observation 
Distr.

State Transition 
Distr.

𝑝 𝜋1:𝑇 , 𝑥1:𝑇 = 𝑝 𝜋1 ෑ

𝑡=1

𝑇−1

𝑝 𝜋𝑡+1|𝜋𝑡 ෑ

𝑡=1

𝑇

𝑝 𝑥𝑡|𝜋𝑡
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ASR: Basics

1. How to obtain 𝑝 𝒚 | 𝒙

2. How to handle alignment, since 𝐿 ≠ 𝑇

13

ASR (Automatic Speech Recognition) is a seq. discriminative problem
 For acoustic observations 𝒙 ≜ 𝑥1, ⋯ , 𝑥𝑇, find the most likely labels 𝒚 ≜ 𝑦1, ⋯ , 𝑦𝐿

Observations 𝒙 = 𝑥1⋯𝑥𝑇

Labels
𝒚
∥
𝑦1
⋮
𝑦𝐿

𝐿 ≠ 𝑇

𝜋1 𝜋2

𝜋3 𝜋5𝜋4

𝜋6

𝜋7 𝜋8

I.2 Classic

Separate 
neural network architectures 

and probabilistic model definitions !

Example of alignment



GMM-HMM: state transitions
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t+1tt-11

xt+1xtxt-1x1

...

...

T

xT

...

...

t-iy+n

t-iy+ng

f-iy+l

s-iy+l

it

at

good

we

iy t

g u d

w i:
we

good

at

it

Acoustic HMM states Lexicon Language model

a t

iy

t-iy+n

t-iy+ng

f-iy+l

s-iy+l

Phonetic context-dependency

State transitions in 𝝅 are determined by a state transition graph (WFST), constrained by 

A path 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇 uniquely determines a label sequence 𝒚, but not vice versa.

GMM



GMM-HMM
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t+1tt-11

xt+1xtxt-1x1

...

...

T

xT

...

...

GMM

 Training: Maximum likelihood 𝑝 𝒚, 𝒙 = σ𝝅: ℬ𝐻𝑀𝑀 𝝅 =𝒚𝑝(𝝅, 𝒙) via the forward-backward algo.

 Inference: Viterbi Decoding via max
𝝅

𝑝 𝝅, 𝒙

A path 𝝅 uniquely determines 𝒚 via mapping ℬ𝐻𝑀𝑀



WFST
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• WFSTs (weighted finite-state transducers) for Viterbi decoding
 Pioneered by AT&T in late 1990’s [Mohri et al., 2008]

Acoustic HMMs:  H  Lexicon: L Language model: GPhonetic context-dependency: C

    N min det H det C det L G

Composed and optimized into a single WFST

which represents 𝑝 𝜋𝑡+1|𝜋𝑡 and is used in Viterbi decoder.

Well implemented in Kaldi toolkit https://github.com/kaldi-asr/kaldi

M. Mohri, et al., "Speech Recognition with Weighted Finite-State Transducers", 2008.

https://github.com/kaldi-asr/kaldi


DNN-HMM
• ASR state-of-the-art: DNNs of various network architectures (MLP, LSTM, CNN, 

Transformer, etc.), initially DNN-HMM

• Conventionally, multi-stage
monophone GMM-HMM 

 alignment & triphone tree building 
 triphone GMM-HMM
 alignment 
 triphone DNN-HMM 17

[Dahl, et al., TASLP 2012]

𝑝 𝑥𝑡|𝜋𝑡 =
𝑝 𝜋𝑡|𝑥𝑡 𝑝 𝑥𝑡

𝑝 𝜋𝑡

State posterior prob. 
estimated from the DNN, which needs 

frame-level alignments

State prior prob. 
estimated from the training data

Can be ignored.

G. Dahl, et al., "Context-dependent pre-trained deep neural networks for 
large-vocabulary speech recognition", TASLP, 2012.



• End-to-end in the sense that:
• Eliminate the construction of GMM-HMMs and phonetic decision-trees, and can be 

trained from scratch (flat-start or single-stage)

• In a more strict/ambitious sense:
• Remove the need for a pronunciation lexicon and, even further, train the acoustic and 

language models jointly rather than separately

• Trained to optimize criteria that are related to the final evaluation metric that we are 
interested in (typically, word error rate)

• Motivation
• Simplify system pipeline, reduce expert knowledge and labor (such as compiling the 

ProLex, building phonetic decision trees)

Advancing to end-to-end ASR: motivation

18



Advancing to end-to-end ASR: techniques

1. How to obtain 𝑝 𝒚 | 𝒙

2. How to handle alignment, since 𝐿 ≠ 𝑇

ASR is a sequence discriminative problem
 For acoustic observations 𝒙 ≜ 𝑥1, ⋯ , 𝑥𝑇, find the most likely labels 𝒚 ≜ 𝑦1, ⋯ , 𝑦𝐿

Observations 𝒙 = 𝑥1⋯𝑥𝑇

Labels
𝒚
∥
𝑦1
⋮
𝑦𝐿

𝐿 ≠ 𝑇

𝜋1 𝜋2

𝜋3 𝜋5𝜋4

𝜋6

𝜋7 𝜋8

• Need a differentiable sequence-
level loss of mapping acoustic 
sequence 𝒚 to label sequence 𝒙

• Explicitly: introduce hidden state sequence 𝝅, as in 
Connectionist Temporal Classification (CTC), 
RNN Transducer (RNNT), CRF

• Implicitly: as in Attention based Encoder-Decoder 
(AED)

19
Example of explicit alignment



History
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GMM-HMM
(IBM, AT&T, 1980s)

DNN-HMM
(2009)

CTC
(2006)

AED
(2015)

CTC-CRF
(2019)

RNN-T
(2012)

• [CTC] Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with 
RNNs”, ICML 2006. 

• [DNN-HMM] A. Mohamed, et al., “Deep belief networks for phone recognition”, NIPS Workshop Deep 
Learning for Speech Recognition and Related Applications, 2009.

• [RNNT] A. Graves, “Sequence transduction with recurrent neural networks”, ICML 2012 Workshop on 
Representation Learning.

• [AED] D. Bahdanau, et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
• [LF-MMI] D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI", 

INTERSPEECH 2016.
• [CTC-CRF] Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

LF-MMI
(2016)



CTC: introducing blank symbol

Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with RNNs”, ICML 2006. 

• Motivation: training 𝑝 𝒚 | 𝒙 without the need for frame-level alignments 
between the acoustics 𝒙 and the transcripts 𝒚

 Introduce a state sequence 𝝅 ≜ 𝜋1, ⋯ , 𝜋𝑇,  where 𝜋𝑡 ∈ the-alphabet-of-labels  <b>

𝑝 𝝅| 𝒙 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡|𝒙

Linear&Softmax Layer

𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Acoustic Encoder

ℎ1 ℎ𝑡 ℎ𝑇⋯ ⋯

𝑝 𝜋1|𝒙 𝑝 𝜋𝑡|𝒙 𝑝 𝜋𝑇|𝒙

𝑧𝑡 = 𝑊ℎ𝑡 ∈ ℝ𝐾+1

𝑝 𝜋𝑡 = 𝑘|𝒙 =
𝑒𝑥𝑝 𝑧𝑡

𝑘

σ𝑖 𝑒𝑥𝑝 𝑧𝑡
𝑖 ≜ 𝑝𝑡

𝑘 : the 

prob. of observing label 𝑘 at time 𝑡
The un-normalized outputs 𝑧𝑡 are 

often called logits.

Path posterior 

21

State posterior 



CTC topology

 State topology refers to the state transition structure in 𝝅, which basically determines 
the mapping ℬ𝐶𝑇𝐶 from 𝝅 to 𝒚

𝑝 𝒚|𝒙 = ෍

𝝅: ℬ𝐶𝑇𝐶 𝝅 =𝒚

𝑝(𝝅|𝒙)

𝑝 𝝅|𝒙 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡|𝒙
Path posterior 

Label-seq posterior 

CTC topology : a mapping ℬ𝐶𝑇𝐶 maps 𝝅 to 𝒚 by
1. reducing repetitive symbols to a single symbol;
2. removing all blank symbols. 

ℬ −𝐶𝐶 − −𝐴𝐴 − 𝑇 − = 𝐶𝐴𝑇

22

Summing over all possible paths, which map to 𝒚



CTC: the gradient & the forward-backward algorithm

𝜕𝑙𝑜𝑔𝑝 𝒚|𝒙

𝜕𝑧𝑡
𝑘 = 𝐸𝑝(𝝅|𝒙,𝒚)

𝜕𝑙𝑜𝑔𝑝 𝝅|𝒙

𝜕𝑧𝑡
𝑘

∵ Fisher Equality [Ou, arxiv 2018]

= 𝐸𝑝(𝝅|𝒙,𝒚)
𝜕𝑙𝑜𝑔𝑝𝑡

𝜋𝑡

𝜕𝑧𝑡
𝑘

= 𝐸𝑝(𝝅|𝒙,𝒚) 𝛿 𝜋𝑡 = 𝑘 − 𝑝𝑡
𝑘

= 𝑝(𝜋𝑡 = 𝑘|𝒙, 𝒚) − 𝑝𝑡
𝑘

i.e., the error signal received by the acoustic 
encoder NN during training

∵ 𝑝 𝝅| 𝒙 =ෑ

𝑡=1

𝑇

𝑝𝑡
𝜋𝑡

i.e., 𝛾𝑡
𝑘, the posterior state occupation probability, calculated using the alpha-beta variables 

from the forward-backward algorithm [Rabiner, 1989]

Providing easy derivation and giving insight, not appeared in [Graves, et al., 2006] and elsewhere

23

For logit 𝑧𝑡
𝑘 , 1 ≤ 𝑡 ≤ 𝑇

Z. Ou. "A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling", arXiv, 2018.



CTC: LM integration with WFSTs
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• Incorporate lexicon and LM to improve best-path-decoding

Lexicon: L Language model: GWFST representing CTC topology: T

Composed and optimized into a single WFST

• Best-path-decoding or Prefix-search-decoding
max
𝝅

𝑝 𝝅|𝒙 max
𝒚

𝑝 𝒚|𝒙

max
𝝅

𝑝 𝝅|𝒙 𝐿𝑀(ℬ𝐶𝑇𝐶 𝝅 )



WFST representation of CTC topology [Xiang&Ou, 2019]

EESEN T.fst Corrected T.fst

• Miao, et al., “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding ”, ASRU 2015.
• Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

Using corrected T.fst performs slightly better; The decoding graph size smaller, and the decoding speed faster.

25



CTC: shortcoming
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• Conditional independence assumption

𝑝 𝝅| 𝒙 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡|𝒙

𝑥1 𝑥𝑡 𝑥𝑇⋯ ⋯

Acoustic Encoder

ℎ1 ℎ𝑡 ℎ𝑇⋯ ⋯

𝑝 𝜋1|𝒙 𝑝 𝜋𝑡|𝒙 𝑝 𝜋𝑇|𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

Graphical Model RepresentationComputational flow

Overcome
RNN-T

CTC-CRF



Content

27

I. Basics for end-to-end speech recognition (15*3=45 min)

1. Probabilistic graphical modeling (PGM) framework

2. Hybrid DNN-HMM and Connectionist Temporal Classification (CTC)

3. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition (15*3=45 min)

1. Data-efficiency

2. Multilingual and crosslingual ASR

3. Language Model Integration for Transducer based Speech Recognition

III. Open questions and future directions + QA (15 min)

QA + break 15-min



• Historically
• GMM-HMMs are generative models

• DNN-HMMs are interpreted as generative models (interpreting 𝑝 𝑥𝑡|𝜋𝑡 =
𝑝 𝜋𝑡|𝑥𝑡 𝑝 𝑥𝑡

𝑝 𝜋𝑡

as pseudo-likelihood), though strictly not

• A large body of works to improve GMM-HMMs and DNN-HMMs, by 
using sequence-discriminative criteria, like

• Maximum Mutual Information (MMI), boosted MMI (BMMI), Minimum Phone Error 
(MPE), Minimum Bayes Risk (MBR) [Karel, et al., 2013]

• Minimum Word Error Rate (MWER) [Stolcke, et al., 1997]

Sequence discriminative training

28

• V. Karel, et al., "Sequence-discriminative training of deep neural networks", INTERSPEECH 2013.
• A. Stolcke, et al., "Explicit word error minimization in N-best list rescoring", Eurospeech, 1997.



MMI and CML

29
• G. Heigold, et al., "Equivalence of generative and log-linear models", TASLP, 2011.
• D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI", INTERSPEECH 2016.

• MMI training of a GMM-HMM, for acoustic input 𝒙 and transcript 𝒚, is equivalent to 
CML (conditional maximum likelihood) training of a CRF (using 0/1/2-order features in 
potential definition) [Heigold, et al., 2011].

• LF-MMI: no division by the prior, uniform transition probabilities, using log-softmax prob. of states 

as the log of a pseudo-likelihood [Povey, et al., 2016]

• For the two manners - indirectly formulated as MMI training of a pseudo HMM [Povey, 
et al., 2016] or directly formulated as CML training of a CRF, it would be conceptually 
simpler to adopt the later manner.

𝐽𝑀𝑀𝐼 = 𝑙𝑜𝑔
𝑝 𝒙 | 𝒚

𝑝 𝒙
= 𝑙𝑜𝑔

𝑝 𝒚 | 𝒙

𝑝 𝒚
𝐽𝐶𝑀𝐿 = 𝑙𝑜𝑔𝑝 𝒚 | 𝒙
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• Everything should be made as simple 

as possible, but not simpler.

• When the solution is simple, God is 

answering.

—— Albert Einstein



 Word probabilities at each time-step are locally normalized, so successors of incorrect 
histories receive the same mass as do the successors of the true history. [Wiseman, et al., 2016]

Label bias

31
• Wiseman, et al., "Sequence-to-sequence Learning as Beam-Search Optimization", EMNLP, 2016.
• Andor, et al., "Globally Normalized Transition-Based Neural Networks", ACL, 2016.

 [Andor, et al., 2016]
• “Intuitively, we would like the model to be able to revise an earlier decision made during search, when 

later evidence becomes available that rules out the earlier decision as incorrect.” 
• “the label bias problem means that locally normalized models often have a very weak ability to revise 

earlier decisions.”
• A proof that globally normalized models are strictly more expressive than locally normalized models.

Tom likes tea
John likes tea
Alice like tea

Training data 

John

Alice

Tom

likes

like

tea

Correct history

Wrong history



Exposure bias
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 Exposure bias results from training in a certain 
way (maybe alleviated by scheduled sampling), 
Label bias results from properties of the model 
itself.

• Guo et al, A new GAN-based end-to-end TTS training algorithm, Interspeech 2019.

 Mismatch between training (teacher forcing) and testing (prediction) of 
locally-normalized sequence models [Wiseman, et al., 2016]:

• Training: maximize the likelihood of each successive target word,
conditioned on the gold history of the target word.

• Testing: the model predict the next step, using its own predicted samples 
in testing.

训练时 𝑦𝑡 → ො𝑦𝑡+1，预测时 ො𝑦𝑡 → ො𝑦𝑡+1，不匹配



Conditional random field (CRF)
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𝑦𝑖−1 𝑦𝑖

𝑥𝑙

𝑦𝑖+1

A CRF define a conditional distribution over output sequence 𝑦𝑙 given input sequence 𝑥𝑙

of length 𝑙 : 

Potential for linear-chain:

A. Gunawardana, et al.,"Hidden conditional random fields for phone classification", Europspeech, 2005.

Node potential Edge potential

Successfully applied for sequence labeling in NLP, less so for ASR

 CRFs was explored for phone classification, using zero, first and second 
order features [Gunawardana, et al., 2005]. 

 CTC-CRF: the first CRF successfully developed for end-to-end ASR

Example of a linear-chain CRF

 CRFs can overcome “label bias” and “exposure bias”.



Training of Neural (linear-chain) CRFs

𝜕𝑙𝑜𝑔𝑝 𝑦|𝑥

𝜕𝜙𝑡
𝑘 = 𝛿 𝑦𝑡 = 𝑘 − 𝐸𝑝(𝑦|𝑥) 𝛿 𝑦𝑡 = 𝑘

= 𝛿 𝑦𝑡 = 𝑘 − 𝑝(𝑦𝑡 = 𝑘|𝑥) i.e., the error signal received by the NN 
feature extractor during training

i.e., 𝛾𝑡
𝑘, the posterior state occupation probability, calculated using the alpha-beta variables 

from the forward-backward algorithm [Rabiner, 1989]
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For potential value 𝜙𝑡
𝑘 , 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑘 ≤ 𝐾

𝑝𝜃 𝑦|𝑥 =
1

𝑍𝜃 𝑥
exp 𝑢𝜃 𝑥, 𝑦 , where 𝑢𝜃 𝑥, 𝑦 =෍

𝑡
𝜙𝑡
𝑦𝑡 +෍

𝑡
𝐴𝑦𝑡−1,𝑦𝑡Model



Content
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I. Basics for end-to-end speech recognition (15*3=45 min)

1. Probabilistic graphical modeling (PGM) framework

2. Hybrid DNN-HMM and Connectionist Temporal Classification (CTC)

3. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition (15*3=45 min)

1. Data-efficiency

2. Multilingual and crosslingual ASR

3. Language Model Integration for Transducer based Speech Recognition

III. Open questions and future directions + QA (15 min)

QA + break 15-min



Section Content

1.Motivation

2.Related work

3.Method: CTC-CRF

4.Experiments

5.Conclusion
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• H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic 
Modeling with CTC Topology", ICASSP, 2019.

• K. An, H. Xiang, Z. Ou. "CAT: A CTC-CRF based ASR 
Toolkit Bridging the Hybrid and the End-to-end 
Approaches towards Data Efficiency and Low 
Latency", INTERSPEECH, 2020.

• Fan, et al., "The SLT 2021 children speech 
recognition challenge: Open datasets, rules and 
baselines", SLT, 2021.

• H. Zheng, W. Peng, Z. Ou, J. Zhang. "Advancing 
CTC-CRF Based End-to-End Speech Recognition 
with Wordpieces and Conformers", 
arXiv:2107.03007, 2021.



• 目前语音识别技术，过度依赖有监督学习和大量人工标注数据

• 这里的效率，不是指机器计算的效率（MIPS，million instructions 
per second），也不是指机器的能耗效率（MIPS/Watt），而是指

—— 机器学习的效率

• 谱系化的数据高效的建模与学习方法
模型架构

无监督、半监督、自监督学习

预训练

迁移学习

主动学习

元学习
37

数据高效 Data-efficient 效率 =
收益

数据人工标注成本



研究背景
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𝑃 𝑌|𝑋 =
𝑃(𝑋|𝑌) ฑ𝑃(𝑌)

𝑃(𝑋)

声学模型 语言模型

欢迎参观清华电子系

• 当前技术依赖

N种声学场景 * M种语言领域

大量标注下有监督训练

• 适度模块化实现高效学习，

保留声学模型、语言模型的必要分解

𝑋 = 𝑥1𝑥2⋯
语音信号

𝑌 = 𝑦1𝑦2⋯
词序列

题海



𝜋𝑡−1

𝑥𝑡−1

𝜋𝑡

𝑥𝑡 𝑥𝑡+1

𝜋𝑡+1 𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1

AttentionDNN-HMM

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

CTC
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缺陷: 𝜋𝑡 条件独立性 缺陷: 𝑦𝑖 有向图序列模型
曝光偏置缺陷

缺陷:多阶段

Attention Seq2Seq
基于注意力
(Bengio, 2015)

RNN-T
转换器
(Graves, 2012)

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

RNN-T
缺陷: 𝜋𝑡 有向图序列模型

曝光偏置缺陷

技术挑战
语音识别模型 𝑃 𝑋 𝑌 发展历史：具有不同的图结构，不断进步

GMM-HMM
高斯混合模型
-隐马尔可夫模型
(IBM, AT&T, 1980s)

DNN-HMM
深层神经网络
-隐马尔可夫模型
(Hinton, 2009)

CTC
神经时序分类
(Graves, 2006)

CTC-CRF
条件随机场
(Xiang&Ou, 2019)



𝜋𝑡−1

𝑥𝑡−1

𝜋𝑡

𝑥𝑡 𝑥𝑡+1

𝜋𝑡+1 𝑦𝑖−1 𝑦𝑖

𝒙

𝑦𝑖+1

AttentionDNN-HMM

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

CTC
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缺陷: 𝜋𝑡 条件独立性 缺陷: 𝑦𝑖 有向图序列模型缺陷:多阶段

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

RNN-T
缺陷: 𝜋𝑡 有向图序列模型

基于条件随机场的声学模型

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

提出 CTC-CRF，占有独特位置，

克服了历史上各类模型的缺陷，助力数据高效，



CTC vs CTC-CRF
CTC CTC-CRF

𝑝 𝒚 𝒙 = σ𝝅:ℬ 𝝅 =𝒚𝑝(𝝅|𝒙), using CTC topology ℬ

State Independence

𝑝 𝝅 𝒙;𝜽 =ෑ

𝑡=1

𝑇

𝑝 𝜋𝑡 𝒙

𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1 𝜋𝑡−1 𝜋𝑡

𝒙

𝜋𝑡+1

Node potential, by NN

by n-gram denominator LM of labels, like in LF-MMI

𝑝 𝝅 𝒙; 𝜽 =
𝑒𝜙(𝝅,𝒙;𝜽)

σ𝝅′ 𝑒
𝜙(𝝅′,𝒙;𝜽)

𝜙 𝝅, 𝒙; 𝜽 =෍
𝑡=1

𝑇 log 𝑝 𝜋𝑡 𝒙
+ log𝑝𝐿𝑀 (ℬ(𝝅)) Edge potential,

𝜕log 𝑝 𝒚 𝒙; 𝜽

𝜕𝜽
= 𝔼𝑝(𝝅|𝒚,𝒙;𝜽)

𝜕log 𝑝 𝝅|𝒙; 𝜽

𝜕𝜽

𝜕log 𝑝 𝒚 𝒙; 𝜽

𝜕𝜽
= 𝔼𝑝(𝝅|𝒙,𝒚;𝜽)

𝜕𝜙 𝝅, 𝒙; 𝜽

𝜕𝜽
− 𝔼𝑝(𝝅′|𝒙;𝜽)

𝜕𝜙 𝝅′, 𝒙; 𝜽

𝜕𝜽
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Related work (SS-LF-MMI/EE-LF-MMI)

• Single-Stage (SS) Lattice-Free Maximum-Mutual-Information (LF-MMI)
 10 - 25% relative WER reduction on 80-h WSJ, 300-h Switchboard and 2000-h 

Fisher+Switchboard datasets, compared to CTC, Seq2Seq, RNN-T.

 Cast as MMI-based discriminative training of an HMM (generative model) with

Pseudo state-likelihoods calculated by the bottom DNN,

Fixed state-transition probabilities.

 2-state HMM topology

 Including a silence label

42Hadian, et al., “Flat-start single-stage discriminatively trained HMM-based models for ASR”, T-ASLP 2018.

CTC-CRF

 Cast as a CRF;

 CTC topology;

 No silence label.



SS-LF-MMI vs CTC-CRF

SS-LF-MMI CTC-CRF

State topology HMM topology with two states CTC topology

Silence label

Using silence labels. 

Silence labels are randomly inserted 
when estimating denominator LM.

No silence labels.  Use <blk> to absorb 
silence. 

 No need to insert silence labels to 
transcripts.

Decoding No spikes.
The posterior is dominated by <blk> and 

non-blank symbols occur in spikes.
 Speedup decoding by skipping blanks.

Implementation
Modify the utterance length to one 
of 30 lengths; use leaky HMM.

 No length modification; no leaky 
HMM.

43



Experiments

• We conduct our experiments on three benchmark datasets: 
• WSJ 80 hours
• Switchboard 300 hours
• Librispeech 1000 hours

• Acoustic model: 6 layer BLSTM with 320 hidden dim, 13M parameters

• Adam optimizer with an initial learning rate of 0.001, decreased to 0.0001 when 
cv loss does not decrease

• Implemented with Pytorch.

• Objective function (use the CTC objective function to help convergences):
𝒥𝐶𝑇𝐶−𝐶𝑅𝐹 + 𝛼𝒥𝐶𝑇𝐶

• Decoding score function (use word-based language models, WFST based 
decoding):

log 𝑝 𝒍 𝒙 + 𝛽 log 𝑝𝐿𝑀(𝒍)

44H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.



Experiments (Comparison with CTC, phone based)

Model Unit LM SP dev93 eval92

CTC Mono-phone 4-gram N 10.81% 7.02%

CTC-CRF Mono-phone 4-gram N 6.24% 3.90%

Model Unit LM SP SW CH

CTC Mono-phone 4-gram N 12.9% 23.6%

CTC-CRF Mono-phone 4-gram N 11.0% 21.0%

Model Unit LM SP Dev Clean Dev Other Test Clean Test Other

CTC Mono-phone 4-gram N 4.64% 13.23% 5.06% 13.68%

CTC-CRF Mono-phone 4-gram N 3.87% 10.28% 4.09% 10.65%

WSJ 80h

Switchboard 300h

Librispeech 1000h

44.4%

14.7%

SP: speed perturbation for 3-fold data augmentation.

19.1%

11%

22.1%
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Model SW CH Average Source

Kaldi chain triphone 9.6 19.3 14.5 IS 2016

Kaldi e2e chain monophone 11.0 20.7 15.9 ASLP 2018, 26M

Kaldi e2e chain biphone 9.8 19.3 14.6 ASLP 2018, 26M

CTC-CRF monophone 10.3 19.7 15.0 ICASSP 2019, BLSTM, 13M

CTC-CRF monophone 9.8 18.8 14.3 IS 2020, VGG BLSTM, 16M

DNN-HMM triphone 9.8 19.0 14.4 RWTH IS 2018

DNN-HMM triphone 9.6 19.3 14.5 IBM IS 2019

Seq2Seq subword 11.8 25.7 18.8 RWTH IS 2018, LSTM-LM

Seq2Seq subword 10.7 20.7 15.7 Espnet ASRU19

Experiments (Comparison with STOA)

Switchboard 300h

10%

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.
RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.
IBM IS19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.
Google IS19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Model Test Clean Test Other Source

Kaldi chain triphone 4.28 - IS 2016

CTC-CRF monophone 4.0 10.6 ICASSP 2019, BLSTM (6,320), 13M

DNN-HMM triphone 4.4 10.0 RWTH IS 2019

Seq2Seq subword 4.8 15.3 RWTH IS 2018

Seq2Seq subword 4.0 12.0 Espnet ASRU19

Seq2Seq subword 4.1 12.5 Google IS19 (w/o SpecAugment)

Experiments (Comparison with STOA)

Librispeech 1000h

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.
RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.
IBM IS19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.
Google IS19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Mandarin Aishell-1 results
• 170 hours mandarin speech corpus
• 400 speakers from different accent areas
• 15% CER reduction compared with LF-MMI
• 5% CER reduction compared with end-to-end transformer

[1] D. Povey, A. Ghoshal, and et al, “The Kaldi speech recognition toolkit,” ASRU 2011.
[2] S. Karita, N. Chen, and et al, “A comparative study on transformer vs RNN in speech applications,” ASRU 2019.
[3] Keyu An, Hongyu Xiang, and Zhijian Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end 
approaches towards data efficiency and low latency,” INTERSPEECH 2020.

Model %CER

LF-MMI with i-vector [1] 7.43

Transformer [2] 6.7

CTC-CRF [3] 6.34
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https://github.com/thu-spmi/ASR-Benchmarks
Measure the progress in a more scientifically way!

https://github.com/thu-spmi/ASR-Benchmarks


• 400 hours of data, targeting to boost children speech recognition research.
• Evaluated on 10 hours of children’s reading and conversational speech.
• 3 baselines (Chain model, Transformer and CTC-CRF) are provided.

model Chain model Transformer CTC-CRF

CER% 28.75 27.28 25.34

Fan Yu, Zhuoyuan Yao, Xiong Wang, Keyu An, Lei Xie, Zhijian Ou, Bo Liu, Xiulin Li, Guanqiong Miao. The SLT 2021 
children speech recognition challenge: Open datasets, rules and baselines. SLT 2021. 49



Advancing CTC-CRF Based End-to-End Speech Recognition 
with Wordpieces and Conformers

Huahuan Zheng, Wenjie Peng, Zhijian Ou and Jinsong Zhang, arXiv:2107.03007
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Experiments (Comparison between different units, WER%)

Model Unit LM Augmentation Eval2000 SW CH

Conformer
(this work)

monophone 4-gram SP, SA 12.1 7.9 16.1

monophone Trans.* SP, SA 10.7 6.9 14.5

wordpiece 4-gram SP, SA 12.7 8.7 16.5

wordpiece Trans.* SP, SA 11.1 7.2 14.8

Model Unit LM Augmentation Test Clean Test Other

Conformer
(this work)

monophone 4-gram SA 3.61 8.10

monophone Trans.** SA 2.51 5.95

wordpiece 4-gram SA 3.59 8.37

wordpiece Trans.** SA 2.54 6.33

Switchboard 300h

Librispeech 1000h

SP: speed perturbation for 3-fold data augmentation.
SA: our implementation of SpecAug with ratio
* Latest Kaldi Transformer LM rescoring
** RWTH 42-layer Transformer

English: a low degree of grapheme-phoneme correspondence
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Model #params unit LM Augmentation Test 

Conformer
(This work)

25.03 char 4-gram SP, SA 12.7

25.03 char Trans. SP, SA 11.6

25.03 monophone 4-gram SP, SA 10.7

25.03 monophone Trans. SP, SA 10.0

25.06 wordpiece 4-gram SP, SA 10.5

25.06 wordpiece Trans. SP, SA 9.8

Experiments (Comparison between different units, WER%)
CommonVoice German 700h

German: a high degree of grapheme-phoneme correspondence
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Model #params LM unit SW CH Eval2000

RNN-T, 2021 [10] 57 RNN LM char 6.4 13.4 9.9

Conformer [9] 44.6 Trans. bpe 6.8 14.0 10.4

TDNN-F [11] - Trans.* triphone 7.2 14.4 10.8

TDNN-F [11] - Trans.** triphone 6.5 13.9 10.2

VGGBLSTM [2] 39.15 RNN LM monophone 8.8 17.4 [13.0]

Conformer
(This work)

51.82 Trans. monophone 6.9 14.5 10.7

51.85 Trans. wordpiece 7.2 14.8 11.1

Experiments (Comparison with STOA)

Switchboard 300h

* N-best rescoring, ** Iterative lattice rescoring

[2] “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end approaches towards data efficiency and 
low latency,” INTERSPEECH 2020.
[9] “Conformer: Convolution-augmented Transformer for Speech Recognition”, Interspeech 2020.
[10] “Advancing RNN transducer technology for speech recognition,” ICASSP 2021.
[11] “A paralleliz- able lattice rescoring strategy with neural language models,” ICASSP, 2021 
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Section Conclusion

• The CTC-CRF framework inherits the data-efficiency of the hybrid approach and 
the simplicity of the end-to-end approach. 

• CTC-CRF significantly outperforms regular CTC on a wide range of benchmarks, 
and is on par with other state-of-the-art end-to-end models.

 English WSJ-80h, Switchboard-300h, Librispeech-1000h; Mandarin Aishell-170h; …

• Flexibility
 Streaming ASR <- INTRESPEECH 2020

 Neural Architecture Search <- SLT 2021

 Children Speech Recognition <- SLT 2021

 Wordpieces, Conformer architectures

 Multilingual and Crosslingual <- ASRU2021

 CUSIDE: streaming ASR  <- INTERSPEECH 2022

 LODR: LM integration <- INTERSPEECH 2022

54https://github.com/thu-spmi/cat

https://github.com/thu-spmi/cat


Content
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I. Basics for end-to-end speech recognition (15*3=45 min)

1. Probabilistic graphical modeling (PGM) framework

2. Hybrid DNN-HMM and Connectionist Temporal Classification (CTC)

3. Conditional random fields and sequence discriminative training

II. Improving end-to-end speech recognition (15*3=45 min)

1. Data-efficiency

2. Multilingual and crosslingual ASR

3. Language Model Integration for Transducer based Speech Recognition

III. Open questions and future directions + QA (15 min)

QA + break 15-min
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Section Content

1.Motivation

2.Related work

3.Method: JoinAP

4.Experiments

5.Conclusion

• Chengrui Zhu, Keyu An, Huahuan Zheng, Zhijian Ou. “Multilingual and Crosslingual 
Speech Recognition using Phonological-Vector based Phone Embeddings”, ASRU 2021.

结合声学（Acoustic）和音韵学（Phonology），促进多语言信息共享与迁移



Motivation

57

• There are more than 7100 languages in the world, and most of them are 
low-resourced languages.

• Multilingual speech recognition
 Training data from a number of languages (seen languages) are merged to train a 

multilingual AM.

• Crosslingual speech recognition
 The target language is unseen in training the multilingual AM.

 In few-shot setting , the AM can be finetuned on limited target language data. 

 In zero-shot setting , the AM is directly used without finetuning*.
* Suppose that text corpus from the target language are available.

Intuitively, the key to successful multilingual and crosslingual recognition is 
to promote the information sharing in multilingual training 

and maximize the knowledge transferring from the well trained multilingual model to the model 
for recognizing the utterances in the new language.



Universal Phone Set

58

无论哪种人类语言，都是人类的一套发音器官发出来的音

since 1888



Phonological features
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 Describe phones by phonological features

 Vowels
• vowel height

• vowel backness

 Consonants

• Place of articulation

• Manner of articulation

• Often phones are seen as being the “atoms” 
of speech. 

• But it is now widely accepted in phonology 
that phones are decomposable into smaller, 
more fundamental units, sharable across all 
languages, called phonological (distinctive) 
features.



• Steven Paul Moran, “Phonetics Information Base and Lexicon”, PhD Thesis, UofW, 2012.

• Release 2.0 from 2019 includes 3020 inventories that contain 3183 segment types found in 2186 distinct languages.

• In addition to phoneme inventories, PHOIBLE includes distinctive feature data for every phoneme in every language.

https://phoible.org/
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Phonological features: micro-decomposition of phones

61

物质 Matter 语音 Speech

元素 Atoms 音素 Phones

元素周期表
Periodic table of elements

国际音标表
IPA table

原子核、电子
Nucleus, electrons

音韵特征
Phonological features

• Like atoms could be split into nucleus and electrons, phones can be 
expressed by phonological features.



Phonological features: promote information sharing
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• Even language-specific phones are connected by using phonological features.



Related work
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• Phonological features(PFs) have been applied in multilingual and crosslingual ASR

• Previous studies generally take a bottom-up approach, 
and suffer from:

• The acoustic-to-PF extraction in a bottom-up way is itself
difficult. 

• Do not provide a principled model to calculate the phone 
probabilities for unseen phones from the new language 
towards zero-shot crosslingual recognition.

Acoustic spectra

Phonological feature extractor

𝑣𝑜𝑖𝑐𝑖𝑛𝑔 ℎ𝑖𝑔ℎ ⋯⋯ ⋯
Phonological feature posteriors 

Standard acoustic model

Feature concatenation, or 
Model combination

Phone probabilities



From phonological features to phonological-vector

64

• Phonological-vector
 Encode each phonological feature by a 2-bit binary vector. (24PFs -> 48bits)

 Plus 3 bits to indicate <blk>, <spn>, <nsn> 

 Phonological-vector: Total 51 bits 

+ - 0

10 01 00



Joining of Acoustics and Phonology (JoinAP)
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• The JoinAP method
 DNN based acoustic feature extraction (bottom-up) 

and phonology driven phone embedding (top-down) 
are joined to calculate the logits.

• JoinAP-Linear

 Linear transformation of phonological-vector 𝑝𝑖 to define 
the embedding vector for phone 𝑖:

𝑒𝑖 = 𝐴𝑝𝑖 ∈ ℝ𝐻

 Apply nonlinear transformation, multilayered neural networks: 
𝑒𝑖 = 𝐴2𝜎(𝐴1𝑝𝑖) ∈ ℝ𝐻

• JoinAP-Nonlinear
Acoustic spectra

DNN based feature extractor

Phone

Phonological transformation

Phone embedding 𝑒𝑖

DNN output ℎ𝑡

Logits: 𝒛𝒕,𝒊 = 𝒆𝒊
𝑻𝒉𝒕



Experiments
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• Train multilingual AM on German, French, Spanish and Polish.

• Zero-shot and few-shot crosslingual ASR on Polish and Mandarin.

Phonetisaurus G2P PanPhone
IPA symbol

• Use CTC-CRF based ASR toolkit, CAT
• Acoustic model: 3 layer VGGBLSTM with 1024 hidden dim

• Adam optimizer: with an initial learning rate of 0.001, decreased to 1/10 until less than 0.00001  

• Dropout 0.5

phonological featureword



Experiments
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• Multilingual experiments 

• Language-degree of a phone: how many languages a phone appears

On average, both JoinAP-Nonlinear and  JoinAP-Linear perform better than Flat-Phone, 
and JoinAP-Nonlinear is the strongest.



Experiments
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• Crosslingual experiments
 Polish:  Mandarin:

 Statistics about Polish and Mandarin:

On average, both JoinAP-Nonlinear and  JoinAP-Linear perform better than Flat-Phone, 
and JoinAP-Nonlinear is the strongest.



Consonants with the same manner of articulation;  Consonants with the same place of articulation; Vowel with similar height

t-SNE map of Polish phone embeddings
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Unvoiced - Voiced:

Aspirated - Unaspirated:

Li, et al., "Hierarchical Phone Recognition with Compositional Phonetics", INTERSPEECH, 2021.

Flat JoinAP-Linear JoinAP- Nonlinear

e(King) - e(queen)  e(man) – e(woman) 
e(King)  e(man) - e(woman) + e(queen)



Experiments
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• t-SNE map of Polish phone embeddings
• Detailed explanation



Section Conclusion

71

• In the multilingual and crosslingual experiments, JoinAP-Nonlinear generally
performs better than JoinAP-Linear and the traditional flat-phone method on
average. The improvements for target language depend on its data amount and 
language-degree.

• Our JoinAP method provides a principled, data-efficent approach to 
multilingual and crosslingual speech recognition.

• Promising directions: exploring DNN based phonological transformation, and 
pretraining over increasing number of languages. 
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“Data efficiency” in speech recognition:

towards utilizing the text-only data

“hello”

e2e system

paired data

text-only data

audio-only data

Amount of available data.

• End-to-end (e2e) speech recognition is “data hungry”, 

whose performance relies on the amount of paired 

speech-text data.

• Text-only & audio-only data are more easily available, 

compared to paired ones (a.k.a. the labeled data).

[1] Li, Jinyu. "Recent Advances in End-to-End Automatic Speech Recognition." arXiv preprint arXiv:2111.01690 (2021).

How to utilize the text?

Language Model (LM) integration!
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LM integration in Transducer:

some intuition and heuristic experience

X: speech data, Y: corresponding label sequence.

E2E model (e.g., RNNT, AED): 

Hybrid model (e.g., DNN-HMM): 

[1] A. Graves, “Sequence transduction with recurrent neural networks,” arXiv preprint arXiv:1211.3711, 2012.

[2] Z. Meng, and et al., “Internal language model estimation for domain-adaptive end-to-end speech recognition,” SLT 2021.
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Related work:

shallow fusion, density ratio and ILME

1. shallow fusion (SF):

2.1 density ratio (DR):

2.2 ILME (Internal Language Model Estimation):
zero out

linear approximation

ILM is approximated via a separate NN LM trained with the same 

linguistic information as RNN-T (transcript of the audio data).

[1] E.McDermott, and et al., “A density ratio approach to language model fusion in end-to-end automatic speech recognition,” ASRU 2019. 

[2] Z. Meng, and et al., “Internal language model estimation for domain-adaptive end-to-end speech recognition,” SLT 2021.
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A brief summary of observation about the Predictor.

1. The Predictor is commonly very shallow neural network. (e.g. 1x LSTM);

2. The Predictor only makes use of limited context (Table 1);

3. The ILM estimated from Predictor performs poorly when evaluated as normal LM.

Table 1. Effect of limited context history [1].

(a) Prior cost of estimated ILM from HAT [1];

The “prior cost” measures the − log𝑃 𝑌 .

[1] E. Variani, and et al, “Hybrid autoregressive transducer (HAT),” in ICASSP 2020.

[2] Z. Meng, and et al., “Internal language model estimation for domain-adaptive end-to-end speech recognition,” in SLT 2021.

(b) Perplexity of estimated ILM from ILME [2]. 

A “normal” LM trained on the transcript has a perplexity of 30.1

Smaller prior cost and perplexity 

denote better LM performance. 
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Low Order Density Ratio (LODR)

conflict
Density ratio:

Estimate the ILM via a 

separately train well-learned LM.

Our observation:

The ILM should be a 

low order weak LM.

Low Order Density ratio:

Estimate the ILM via 2-gram model.

In practice, we obtain the ILM as follows:

1. Prepare the training corpus: we use the transcript only;

2. Train a 2-gram LM on the corpus using KenLM with 

some prunes if required*.

* The size of context could be different according to the granularity of the modeling units.

Low order 

LM

[1] https://github.com/kpu/kenlm

https://github.com/kpu/kenlm
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Experiments: in-domain evaluation with large amount of 

text corpus

Table 3. Performance of LM integration methods, measured by WER % on 

LibriSpeech and CER % on WenetSpeech. The perplexity (PPL) of the ILM is 

computed on the transcript of each dataset. “Rel %” measures the relative reduction 

of WER (CER) compared to “No LM” setup. 

Size of extra corpus:

English: 800 million words 

(9.4M words in transcript)

Chinese: 200 million chars

(17M chars in transcript)

All methods subtracting 

ILM perform better than 

the shallow fusion 

consistently.
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Experiments: cross-domain evaluation and discussion

Table 4. Performance of LM integration methods evaluated on cross-domain scenarios. 

Size of extra corpus:

English (Tedlium-2):

2.2M words (9.4M words in transcript)

Chinese (AISHELL-1): 

1.7M chars (17M chars in transcript)



Decoding method 𝜆1 𝜆2 test-clean WERR test-other WERR

Modified beam search - - 2.73 - 7.15 -

+ SF 0.3 - 2.42 11.4% 6.46 9.7%

+ ILME 0.3 -0.05 2.36 13.6% 6.23 12.9%

+ LODR (bi-gram) 0.3 -0.16 2.28 16.5% 5.94 16.9%

Librispeech (960 hours). Streaming encoder + stateless Transducer.

Decoding method 𝜆1 𝜆2 test-clean WERR test-other WERR

Modified beam search - - 2.00 - 4.63 -

+ SF 0.3 - 1.96 2.0% 4.18 9.7%

+ ILME 0.3 -0.05 1.82 9.0% 4.10 11.4%

+ LODR (bi-gram) 0.4 -0.14 1.83 8.5% 4.03 13.0%

Librispeech + Gigaspeech (10k hours). Non-streaming encoder + pruned & stateless Transducer.

*Results are reported on icefall, a repo maintained by the K2 team.

[1] https://github.com/k2-fsa/k2

[2] https://github.com/k2-fsa/icefall

在K2实验中，LODR表现优秀！
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Conclusions

1. We propose a LODR method, which uses low order and weak LM 

as the estimated ILM for the original DR method, with the 

observation that the ILM of Transducer indeed only captures 

limited linguistic information.

2. The LODR method is evaluated on both in-domain and cross-

domain scenarios, and compared with existing methods. 

• Our proposed LODR consistently outperforms the SF, and 

performs better than the original DR in most tests with less extra 

parameters introduced. 

• As compared to ILME, our LODR method has close performance 

but avoids feeding the labels to the text encoder twice. 

2022/12/24
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“WER we are and WER we think we are”

87Szymański, et al., "WER we are and WER we think we are", EMNLP 2020.

• Test: three different state-of-the-art commercial ASR solutions
• Call Center Conversations (CCC)
• The commercial ASR systems in our evaluation achieve nearly double the error rates 

(reported in the literatures) on both HUB’05 evaluation subsets.



Summary

新一代语音识别技术的若干特点

 Data-efficient, AutoML, Trustworthy
AutoML

Trustworthy

Data-
efficient

数据高效的多语言与跨语言语音识别

 CTC-CRF：支持分立的AM与LM

• 在原理上克服了历史上各类序列鉴别模型的不足！

• 减少对大量人工标注语音数据的依赖

 JointAP：联合声学与音韵学

• 促进多语言训练时信息共享以及跨语言语音识别时信息迁移

 LODR：一种更好、更轻量的语言模型融合新方式

• 如何更好利用纯文本数据，是数据高效ASR的重要特征
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noises, 
accents, 
languages, 
scenarios, 
domains,
...
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Slides and video: http://oa.ee.tsinghua.edu.cn/~ouzhijian/news.htm

http://oa.ee.tsinghua.edu.cn/~ouzhijian/news.htm
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