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Tower of Babel BELiE

Babel progra

From Wikipedia, the free encyclopedia

The IARPA Babel program developed speech recognition technology for noisy
telephone conversations. The main goal of the program was to improve the

performance of keyword search on languages with very little transcribed data, i.e. low-
N (RERLIELIIMData from 26 languages was collected with certain languages being
held-out as "surprise" languages to test the ability of the teams to rapidly build a system
or a new language ¥

Beginning in 2012, two industry-led teams (IBM and BBN) and two university-led teams
(ICSI led by Nelson Morgan and CMU) participated.[?] The IBM team included University
of Cambridge and RWTH Aachen University, while BBN's team included Brno University
of Technology, Johns Hopkins University, MIT and LIMSI. Only BBN[3! and 1BM[41[>116]

@ made it to the final evaluation campaign in 2016, in which BBN won by achieving the

W highest keyword search accuracy on the evaluation language.
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There are 7,139 living human languages distributed in 142 different language families.



ASR brief history

HMM * F Jelinek, “Continuous speech recognition by statistical methods”, Proc. of the IEEE, 1976.
e J. Baker, “The DRAGON system--An overview”, T-ASSP, 1975.

GMM e B.H. Juang, “Maximume-likelihood estimation for mixture multivariate stochastic observations of Markov
chains”, AT&T Technical Journal, 1985.

N-gram, * F Jelinek & R.L. Mercer, “Interpolated estimation of Markov source parameters from sparse data”, Proc.
Smoothing Workshop on Pattern Recognition in Practice, 1980.
* F Jelinek, “The development of an Experimental Discrete Dictation Recognizer”, Proc. of the IEEE, 1985.

Tree based state tying * S. Young, J.J. Odell, P.C. Woodland, “Tree-based state tying for high accuracy acoustic modeling”, HLT
workshop, 1994.

MAP,  C.H. Lee, C.H. Lin, B.H. Juang, “A study on speaker adaptation of the parameters of continuous density
MLLR hidden Markov models”, T-IP, 1991.
 C.J. Leggetter & P.C. Woodland, “Maximum likelihood linear regression for speaker adaptation of continuous
density hidden Markov models”, Computer Speech and Language, 1995.

fMLLR, Speaker * M.JF. Gales, “Maximum likelihood linear transformations for HMM-based speech recognition”, Computer
adaptive training Speech and Language, 1998.
WEST M. Mobhri. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 1997.

M. Mohri, F. Pereira, and M. Riley, “Speech Recognition with Weighted Finite-State Transducers”, 2008.

Discriminative D. Povey, “Discriminative training for large vocabulary speech recognition”, Ph.D. dissertation, 2003.

Ul CET e WEIR, "SSRIEHRAEAVIR . SEREAS, 2021/3/29, b5



ASR brief history

DNN-HMM

NN-LM

CTC

Attention seq2seq

RNN Transducer

Transformer

CRF

A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition”, NIPS Workshop Deep
Learning for Speech Recognition and Related Applications, 2009.

G. Dahl, et al, “Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition”, T-ASLP, 2012.
F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-dependent deep neural networks”, Interspeech, 2011.
D. Povey, et al, "Purely sequence-trained neural networks for ASR based on lattice-free MMI", Interspeech 2016.

Bengio, et al, “A Neural Probabilistic Language Model”, NIPS, 2001.

Mikolov, et al, "Recurrent neural network based language model", Interspeech, 2010.

A. Graves, et al, “Connectionist temporal classification: Labelling unsegmented sequence data with recurrent
neural networks”, ICML, 2006.

H. Sak, et al, “Learning acoustic frame labeling for speech recognition with recurrent networks”, ICASSP, 2015.
Y. Miao, et al, “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding”, ASRU, 2015.

D. Bahdanau, et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015.
J. K. Chorowski, et al, “Attention-based models for speech recognition,” NIPS, 2015.
W. Chan, et al @ google, “Listen, attend and spell: A neural network for large vocabulary conversational speech recognition”, ICASSP, 2016.

A. Graves, “Sequence transduction with recurrent neural networks,” ICML 2012 Workshop on

Representation Learning.
E. Battenberg, et al @ Baidu, “Exploring neural transducers for end-to-end speech recognition”, ASRU 2017.
K. Rao, et al @ Google, “Exploring architectures, data and units for streaming end-to-end speech recognition with RNN-transducer”, ASRU 2017

A. Vaswani, et al @ google, "Attention Is All You Need", NIPS, 2017.
H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

RMER, "S=RESRIRAR | £BFFKS, 2021/3/29, LiE



New-generation ASR

noises,
HMM DNN-HMM Data-efficient < accents,

languages,
GMM NN-LM AutoML scenarios,
N-gram, CTC Trustworthy Al domains,
Smoothing

Attention seq2seq
Tree based state tying

RNN Transducer
MAP,
MLLR Transformer
fMLLR, Speaker CRF
adaptive training N
WFST * Greater representational capability of DNNs 5.4
Discriminative e Larger amounts of labeled speech data for supervised training {4
Training, MMI, MPE « Powerful hardware such GPUs %5 /j

IR, SSRIEERIRATR | SERSAS, 2021/3/29, i 7



Probabilistic Framework

Learning

l p(h|x;8)

+ Data | > Model >

Human knowledge

p(x, h; 0): Generative model, e.g., Hidden Markov Model (HMM)
p(h|x; 6): Discriminative model, e.g., Conditonal Random Field (CRF)

We need probabilistic models, besides neural nets.



Probabilistic Graphical Modeling (PGM) Framework

* Directed Graphical Models / Bayesian Networks (BNs)

= Self-normalized/Local-normalized @ @
» e.g. Hidden Markov Models (HMMs), Neural network (NN) based

classifiers, Variational AutoEncoders (VAEs), Generative Adversarial

Networks (GANs), auto-regressive models (e.g. RNNs/LSTMs) @ @

p(x1,x2,x3,%4) = p(x1)D(x2|x1)p(x3|x2) 0 (x4]%1, X3)

* Undirected Graphical Models / Random Fields (RFs) / Energy-based models

= Involves the normalizing constant Z / Globally-normalized @ @
= e.g. Ising model, Conditional Random Fields (CRFs)

1
p(x1, X3, X3,X4) = ECD(xl,xz)CD(xz,x3)CID(x3,x4)(ID(x1,x4) @ @



DGM example - Neural Net (NN) based classifier

* Multi-class logistic regression
Consider observation/features x € R%, class label y € {1,--+, K}

exp(z;) — wT -1 ...
p(y = k|x) = " P\Zk 2 softmax(z) where z;, wk.x+bk,k 1, , K,
=1 exp(zj) often called logits
GM Representation i i .
Z?T(ﬂx) Computational Graph Representation logits
softmax

1-layer NN 2-layer NN 3-layer NN
(NNs as feature extractors) 10




HMM Viewed as Directed Graphical Model

D& & QR

The joint probability distribution of a hidden Markov model (HMM) :

T—1 T
p(my.7, x1.7) = p(my) l p(Teyq|me) lp(xt|7Tt)
t=1 t=1

State Initial State Transition  State Observation
Distr. Distr. Distr.

11
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ASR: Basics .2 Classic

ASR (Automatic Speech Recognition) is a seq. discriminative problem

= For acoustic observations x = x4, -+, xr, find the most likely labels y = y,, -, y;

1. How to obtain p(y | x) - Separate
neural network architectures

and probabilistic model definitions !

2. How to handle alighment, since L # T

Labels
y L+T

[
V1

YL

Observations x = xq -** xp

Example of alignment

13



GMM-HMM: state transitions

Acoustic HMM states  Phonetic context-dependency Lexicon Language model
it .Iyl O t Q)
t-iy+n Q.Q.Q_. :
) t-ly+n t
tly+ng Q»Q»Q» iy 4t-iy+ng T 0500
f-iy+l Q,Q,Q, Ifl:llzI if'iyﬂ Ifl:llzI 900d @ 49 L9-9@ E[Ilj
syl ARG, sy+

we OHOH0

2 /

State transitions in T are determined by a state transition graph (WFST), constrained by T

l:<eps=>/0
1;jill/0.405
m:jim/1.098

f:fled/2.284

iy:read/0.805
ow:wrote/2.237

A path Tt £ 4, ---, wr uniquely determines a label sequence y, but not vice versa.

e



GMM-HMM

b:bill/1.386
jh:<eps=>/0.287

iy:read/0.805
ow:wrote/2.237

A path T uniquely determines y via mapping Byuu

T~

P Training: Maximum likelihood p(y,x) = ... BHMM(n)=yp(n' X) via the forward-backward algo.
P Inference: Viterbi Decoding via max p (7, x)
w

15



WEST

 WFSTs (weighted finite-state transducers) for Viterbi decoding
= Pioneered by AT&T in late 1990’s [Mohri et al., 2008]

Acoustic HMMs: H  Phonetic context-dependency: C Lexicon: L Language model: G

/e &
vy e x
S Xxey XV X - ‘ W2.W2/p(W2 | wl) g
( - o - XXy &
(& Cawe x x¥xx ~— = yx = o xe >
XX — ¥y r — .
\ XY g v YWY X
! 7

i), o
\_ /
Composed and optimized into a single WFST
N = min(det(H odet(Codet(LoG))))
which represents p(m;,1|m;) and is used in Viterbi decoder.
Well implemented in Kaldi toolkit https://github.com/kaldi-asr/kaldi
16

M. Mohri, et al., "Speech Recognition with Weighted Finite-State Transducers", 2008.


https://github.com/kaldi-asr/kaldi

DNN-HMM

e ASR state-of-the-art: DNNs of various network architectures (MLP, LSTM, CNN,
Transformer, etc.), initially DNN-HMM

Transition Probabilities

State posterior prob.
estimated from the DNN, which needs Can be ignored.

frame-level alignments o
D (x,|1,) = p (1|2 )p (xe) .
t t _— ht.\!i — Observation
p (T[t) | \V.u Probabilities
~S—m — pM
State prior prob. DNN
estimated from the training data h" -
! i
e Conventionally, multi-stage e v ~—
monophone GMM-HMM T U, FiE e %Ob )
. . o £ Baggs f.?‘_é,i:’;. § i '.- “9; servation
- alighnment & triphone tree building PR ae mlm 2l IR e 8
— alignment
N triphone DNN-HMM G. Dahl, et al., "Context-dependent pre-trained deep neural networks for

large-vocabulary speech recognition", TASLP, 2012.



Advancing to end-to-end ASR: motivation

e End-to-end in the sense that:

* Eliminate the construction of GMM-HMMs and phonetic decision-trees, and can be
trained from scratch (flat-start or single-stage)

* In @ more strict/ambitious sense:

 Remove the need for a pronunciation lexicon and, even further, train the acoustic and
language models jointly rather than separately

* Trained to optimize criteria that are related to the final evaluation metric that we are
interested in (typically, word error rate)

* Motivation

» Simplify system pipeline, reduce expert knowledge and labor (such as compiling the
ProLex, building phonetic decision trees)

18



Advancing to end-to-end ASR: techniques

ASR is a sequence discriminative problem

» For acoustic observations x = x4, -+, x7, find the most likely labels y = y4, -, y;

1. How to obtain p(y | x)

2. How to handle alighment, since L # T

AN

Need a differentiable sequence-
level loss of mapping acoustic
sequence y to label sequence x

* Explicitly: introduce hidden state sequence m, as in
Connectionist Temporal Classification (CTC),
RNN Transducer (RNNT), CRF

* Implicitly: as in Attention based Encoder-Decoder
(AED)

Labels
y L+*T

[
V1

YL
Observations x = x4 -- xp
Example of explicit alignment

19




History

DNN-HMM AED
(2009) (2015)
- o—o —
GMM-HMM CTC RNN-T LF-MM|  CTC-CRF
(IBM, AT&T, 1980s) (2006) (2012) (2016)  (2019)

* [CTC] Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with
RNNs”, ICML 2006.

* [DNN-HMM] A. Mohamed, et al., “Deep belief networks for phone recognition”, NIPS Workshop Deep
Learning for Speech Recognition and Related Applications, 20009.

 [RNNT] A. Graves, “Sequence transduction with recurrent neural networks”, ICML 2012 Workshop on
Representation Learning.

* [AED] D. Bahdanau, et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015.

* [LF-MMI] D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI",
INTERSPEECH 2016.

* [CTC-CRF] Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.

20



CTC: introducing blank symbol

* Motivation: training p(y | x) without the need for frame-level alighnments
between the acoustics x and the transcripts y

» Introduce a state sequence ™ £ my, -, mwr, Where m; € the-alphabet-of-labels U <b>

p (11 |x) p(me|x) p(mr|x) -
A A A Linear&Softmax Layer
Path posterior T State posterior zy = Wh, € RK*1
p(m|x) = | |p(melx) . . - :
t=1 = k) = 2P0 ke e
"} S S e

_ prob. of observing label k at time ¢t
Acoustic Encoder :
The un-normalized outputs z; are
le x/rt x/5~ often called logits.

Graves, et al., “Connectionist Temporal Classification: Labelling unsegmented sequence data with RNNs”, ICML 2006. 21



CTC topology

= State topology refers to the state transition structure in 1T, which basically determines

the mapping B frommtoy

Path posterior

CTC topology : a mapping By maps T to y by
1. reducing repetitive symbols to a single symbol;

2. removing all blank symbols.
B(—CC — —AA—-T —) = CAT

T
p(eln) = | [prlo
t=1

Label-seq posterior

p(y|x) = 2 p(7t|x)

O

o O
o o
o O
[
O

T-2 T-1 T

1: Bere(m)=y
Summing over all possible paths, which map to y

B B cBBaaasB
B

B t
B cec B aZBRB B t

B cBBaBBT&tt?B

22



CTC: the gradient & the forward-backward algorithm
For logitzf,1<t<T

dlogp(y|x) . dlogp(rr|x)
az[f — Hp(mixy) azé‘

~* Fisher Equality [Ou, arxiv 2018]

dlogp; !
= p(n|x,y)l azlft ] » p(r| x)=ﬂpft
t=1

— Ep(nlx,y) [6(m, = k) — pﬂ

i.e., the error signal received by the acoustic
= p(n, = k|x,y) — p£‘< encoder NN during training

i.e., y¢, the posterior state occupation probability, calculated using the alpha-beta variables
from the forward-backward algorithm [Rabiner, 1989]

Providing easy derivation and giving insight, not appeared in [Graves, et al., 2006] and elsewhere

Z. Ou. "A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling", arXiv, 2018. 23




CTC: LM integration with WFSTs

* Best-path-decoding or Prefix-search-decoding
max p (| x) manp(ny)

* Incorporate lexicon and LM to improve best-path-decoding
mﬁx p(1t|x) LM (Bcrc (1))

WFST representing CTC topology: T Lexicon: L Language model: G
b:bill o ih:<eps> o l:<eps> 40-<eps>

Composed and optimized into a single WFST



WEST representation of CTC topology [Xiang&Ou, 2019]

A:<eps>

C.C

<blk>:<eps>
B:

B

<eps>:<eps>

EESEN T.fst Corrected T.fst
WEST : dev - 1 test - WEST TLG size  decoding time
clean otner clean otner
Eesen Tfst | 3.90% 1032% 4.11% 10.68% CEese“ rg-fStf %‘gM gogs
Corrected T.fst | 3.87% 10.28% 4.09% 10.65% orrected T.1st M 72s

Using corrected T.fst performs slightly better; The decoding graph size smaller, and the decoding speed faster.

* Miao, et al., “EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding ”, ASRU 2015.

2
e Xiang&Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019. >



CTC: shortcoming

/‘
o _ . RNN-T
* Conditional independence assumption | Overcome > <
r _ CTC-CRF
p(l ) = | |p(elx)
t=1
p(71|x) p(:|x) p(mr|x)
A 3 A
SEORD
) 7 ) f
h]_ ht hT
A A A
Acoustic Encoder X
) 7 7
xl coe xt cee xT

Computational flow Graphical Model Representation
26
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Sequence discriminative training

* Historically

* GMM-HMMs are generative models
p(1elxe)p(xe)

* DNN-HMMs are interpreted as generative models (interpreting p(x|m;) = )
t

as pseudo-likelihood), though strictly not

* A large body of works to improve GMM-HMMs and DNN-HMMs, by
using sequence-discriminative criteria, like

 Maximum Mutual Information (MMI), boosted MMI (BMMI), Minimum Phone Error
(MPE), Minimum Bayes Risk (MBR) [Karel, et al., 2013]

 Minimum Word Error Rate (MWER) [Stolcke, et al., 1997]

e V. Karel, et al., "Sequence-discriminative training of deep neural networks", INTERSPEECH 2013.
e A. Stolcke, et al., "Explicit word error minimization in N-best list rescoring", Eurospeech, 1997.

28



MMI and CML

* MMl training of a GMM-HMM, for acoustic input x and transcript y, is equivalent to
CML (conditional maximum likelihood) training of a CRF (using 0/1/2-order features in
potential definition) [Heigold, et al., 2011].

rix|ly) ~ pylx)

]MMI = l0g p(x) — lOg M

Jemr = logp(y | x)

* LF-MMI: no division by the prior, uniform transition probabilities, using log-softmax prob. of states
as the log of a pseudo-likelihood [Povey, et al., 2016]

* For the two manners - indirectly formulated as MMI training of a pseudo HMM [Povey,
et al., 2016] or directly formulated as CML training of a CRF, it would be conceptually
simpler to adopt the later manner.

* G. Heigold, et al., "Equivalence of generative and log-linear models", TASLP, 2011.

* D. Povey, et al., "Purely sequence-trained neural networks for ASR based on lattice-free MMI", INTERSPEECH 2016. 29



« Everything should be made as simple
as possible, but not simpler.
« When the solution is simple, God is

answering.
—— Albert Einstein

30



Label bias

P Word probabilities at each time-step are locally normalized, so successors of incorrect
histories receive the same mass as do the successors of the true history. [Wiseman, et al., 2016]

Training data

Correct history
.00

Tom likes tea
John likes tea
Alice like tea

Wrong history

» [Andor, et al., 2016]

* “Intuitively, we would like the model to be able to revise an earlier decision made during search, when
later evidence becomes available that rules out the earlier decision as incorrect.”

* “the label bias problem means that locally normalized models often have a very weak ability to revise
earlier decisions.”

* A proof that globally normalized models are strictly more expressive than locally normalized models.

 Wiseman, et al., "Sequence-to-sequence Learning as Beam-Search Optimization", EMNLP, 2016. 31
* Andor, et al., "Globally Normalized Transition-Based Neural Networks", ACL, 2016.



Exposure bias

» Mismatch between training (teacher forcing) and testing (prediction) of
locally-normalized sequence models [Wiseman, et al., 2016]:
* Training: maximize the likelihood of each successive target word,
conditioned on the gold history of the target word.
e Testing: the model predict the next step, using its own predicted samples

In testing. Training @ :
P Exposure bias results from training in a certain @\
way

)

Label bias results from properties of the model (preciction)

itself. @ ““““ @ ---

UH%EHTJ‘ Yt ™ 37t+1, Jv’ﬁ{)ﬂﬂﬁﬁ }7t — )7t+1, AULHEL
* Guo et al, Anew GAN-based end-to-end TTS training algorithm, Interspeech 2019. 32



Conditional random field (CRF)

A CRF define a conditional distribution over output sequence y' given input sequence x*
of length [ :

po(y'le') = 5o explun(als ) Zo(e!) = £, explun(a o)

Potential for linear-chain:  Node potential  Edge potential
L1 e‘, a
uo(z',y') = dilyi,x') + Y Yi(yi-1,vi,2')
i=1 i=1

© CRFs can overcome “label bias” and “exposure bias”.

Successfully applied for sequence labeling in NLP, less so for ASR

P CRFs was explored for phone classification, using zero, first and second Example of a linear-chain CRF
order features [Gunawardana, et al., 2005].

P CTC-CRF: the first CRF successfully developed for end-to-end ASR

A. Gunawardana, et al.,"Hidden conditional random fields for phone classification", Europspeech, 2005. 33



Training of Neural (linear-chain) CRFs

Model  pg(ylx) = - explus (x, )] where ug(x,7) = ) #2+ ) Ay, .y,

Zg(x)
For potential value qbf, 1<t<T,1<k<K

dlogp(y|x)
0qb£‘ — S(Yt — k)

- Ep(ylx) [6(y: = k)]

=5(y, = k) —p(y; = klx)% i.e., the error signal received by the NN

feature extractor during training

i.e., yg‘, the posterior state occupation probability, calculated using the alpha-beta variables
from the forward-backward algorithm [Rabiner, 1989]
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Latency", INTERSPEECH, 2020.
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with Wordpieces and Conformers",
arXiv:2107.03007, 2021.
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CTCvs CTC-CRF

CTC

CTC-CRF

p(Y|x) = X r.5(m)=y P(7T|X), using CTC topology B

State Independence

T
p(lx;0) = | [preln)
t=1

e $(mx;0)
Zn'/ e¢(n1,x;9)/

T log p(ms|x)
T, x;0) = Z ;
¢( ) t=1 (+ log PLm (B(Tl’)) Edge potential,

by n-gram denominator LM of labels, like in LF-MMI

p(m|x; 0) = Node potential, by NN

dlog p(y|x; 0) dlog p(m|x; 6)

FY: = Epmiyx0) [ PY:

dlog p(ylx; 0)
00 = Ep(rixy;0)

dp(m, x; 0)
]
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Related work (ss-LF-MMI/EE-LF-MMI)

* Single-Stage (SS) Lattice-Free Maximum-Mutual-Information (LF-MMI)

= 10 - 25% relative WER reduction on 80-h WSJ, 300-h Switchboard and 2000-h
Fisher+Switchboard datasets, compared to CTC, Seq2Seq, RNN-T.

= Cast as MMlI-based discriminative training of an HMM (generative model) with
Pseudo state-likelihoods calculated by the bottom DNN,

Fixed state-transition probabilities. - @
= 2-state HMM topology D CTC-CRF
= Including a silence label » Cast as a CRF;

= CTC topology;

. s O s No silence label.
N -

N

Hadian, et al., “Flat-start single-stage discriminatively trained HMM-based models for ASR”, T-ASLP 2018. 42



SS-LF-MMI vs CTC-CRF

State topology HMM topology with two states CTC topology

No silence labels. Use <blk> to absorb
silence.
© No need to insert silence labels to
transcripts.

Using silence labels.

Silence label | Silence labels are randomly inserted
when estimating denominator LM.

The posterior is dominated by <blk> and
Decoding No spikes. non-blank symbols occur in spikes.
© Speedup decoding by skipping blanks.

Modify the utterance length to one © No length modification; no leaky

Implementation | ¢ 5, lengths; use leaky HMM. HMM.




Experiments

* We conduct our experiments on three benchmark datasets:

 WSIJ 80 hours
e Switchboard 300 hours
* Librispeech 1000 hours

e Acoustic model: 6 layer BLSTM with 320 hidden dim, 13M parameters

* Adam optimizer with an initial learning rate of 0.001, decreased to 0.0001 when
cv loss does not decrease

* Implemented with Pytorch.
* Objective function (use the CTC objective function to help convergences):

Jderc—crr + Adcrc

* Decoding score function (use word-based language models, WFST based
decoding):

logp(llx) + Blogp.y (D)

H. Xiang, Z. Ou. "CRF-based Single-stage Acoustic Modeling with CTC Topology", ICASSP, 2019.
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Experiments (Comparison with CTC, phone based)

WSJ 80h
Model Unit dev93 eval92
CTC Mono-phone 4-gram N 10.81% 7.02%I 44.4%
CTC-CRF Mono-phone 4-gram N 6.24% 3.90%‘1’
Switchboard 300h
Model Unit LM SP SW CH
CTC Mono-phone A-gram N 12.9%I 1479 23.6% I 11%
CTC-CRF Mono-phone 4-gram N 11.0%‘1' 21.0% ‘l'

Librispeech 1000h

CTC

SP

Dev Clean

Dev Other

Mono-phone

4-gram

4.64%

13.23%

Test Clean
5.06%]

Test Other

13.68%
' 2.1%

CTC-CRF

Mono-phone

4-gram

3.87%

10.28%

4.09% 41

”10.65%

SP: speed perturbation for 3-fold data augmentation.
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Experiments (Comparison with STOA)

Switchboard 300h
Model SW CH Average Source
Kaldi chain triphone 9.6 19.3 14.5 IS 2016
Kaldi e2e chain monophone 11.0 20.7 15.9¢ | ASLP 2018, 26M
Kaldi e2e chain biphone 9.8 19.3 14.6| | ASLP 2018, 26M
CTC-CRF monophone 10.3 19.7 15.0[ | ICASSP 2019, BLSTM, 13M
CTC-CRF monophone 9.8 18.8 14.3Y | IS 2020, VGG BLSTM, 16M

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.

RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.

IBM 1S19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.

Google 1S19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Experiments (Comparison with STOA)

Librispeech 1000h

Model Test Clean Test Other Source
Kaldi chain triphone 4.28 - IS 2016
CTC-CRF monophone 4.0 10.6 ICASSP 2019, BLSTM (6,320), 13M

RWTH IS 2018, “Improved training of end-to-end attention models for speech recognition”.

RWTH IS 2019, “RWTH ASR Systems for LibriSpeech Hybrid vs Attention -- Data Augmentation”.

IBM 1S19, “Forget a Bit to Learn Better Soft Forgetting for CTC-based Automatic Speech Recognition”.
Espnet ASRU19, “Espresso: A Fast End-to-end Neural Speech Recognition Toolkit”.

Google 1S19, “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition”.
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Mandarin Aishell-1 results

* 170 hours mandarin speech corpus

* 400 speakers from different accent areas

* 15% CER reduction compared with LF-MMI

* 5% CER reduction compared with end-to-end transformer

Model %CER

LF-MMI with i-vector [1] 7.43
Transformer [2] 6.7
CTC-CRF [3] 6.34

https://github.com/thu-spmi/ASR-Benchmarks
Measure the progress in a more scientifically way!

[1] D. Povey, A. Ghoshal, and et al, “The Kaldi speech recognition toolkit,” ASRU 2011.
[2] S. Karita, N. Chen, and et al, “A comparative study on transformer vs RNN in speech applications,” ASRU 2019.
[3] Keyu An, Hongyu Xiang, and Zhijian Ou, “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end

approaches towards data efficiency and low latency,” INTERSPEECH 2020.
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https://github.com/thu-spmi/ASR-Benchmarks

2021 SLT CHILDREN
SPEECH RECOGNITION CHALLENGE (CSRC)

oreanzer: (@) Fhzird @ dard O AMKE ) BERER &

* 400 hours of data, targeting to boost children speech recognition research.
* Evaluated on 10 hours of children’s reading and conversational speech.
* 3 baselines (Chain model, Transformer and CTC-CRF) are provided.

CER% 28.75 27.28 25.34

Fan Yu, Zhuoyuan Yao, Xiong Wang, Keyu An, Lei Xie, Zhijian Ou, Bo Liu, Xiulin Li, Guanqgiong Miao. The SLT 2021
children speech recognition challenge: Open datasets, rules and baselines. SLT 2021.




Advancing CTC-CRF Based End-to-End Speech Recognition

with Wordpieces and Conformers
Huahuan Zheng, Wenjie Peng, Zhijian Ou and Jinsong Zhang, arXiv:2107.03007

40 ms rate

Basic Units of

Label Sequence

Labels
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phoneme DKRAO1ISTDHAHOTHREH1ISHOW2LDSIH1

NSDHAHODAA1RKDEY1
character that _neither_of _them_had _cros
Jarapheme sed the threshold _since_the dar
k day_
subword that_neither_of them_ had_crossed the_
/wordpiece threshold _since_the dark day_
word that neither of them had crossed the threshold

since the dark day

Dropout
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Experiments (Comparison between different units, WER%)
Switchboard 300h

monophone 4-gram SP, SA 12.1 7.9 16.1
Conformer | \,5nophone Trans.* SP, SA 10.7 ¢ 6.9 14.5
(this work) :

wordpiece 4-gram SP, SA 12.7 8.7 16.5

wordpiece Trans.* SP, SA 11.1 ¢ 7.2 14.8

Librispeech 1000h

monophone 4-gram SA 3.61 8.10
Conformer monophone Trans.** SA 2.51 1 5.95 1
(this work) :

wordpiece 4-gram SA 3.59 8.37

wordpiece Trans.** SA 2.54 { 6.33

SP: speed perturbation for 3-fold data augmentation.
SA: our implementation of SpecAug with ratio
* Latest Kaldi Transformer LM rescoring

** RWTH 42-layer Transformer o1

English: a low degree of grapheme-phoneme correspondence



Experiments (Comparison between different units, WER%)

CommonVoice German 700h

25.03 char 4-gram SP, SA 12.7
25.03 char Trans. SP, SA 11.6 ¢
Conformer 25.03 monophone 4-gram SP, SA 10.7
(This work) 25.03 monophone Trans. SP, SA 10.0 ¢
25.06 wordpiece 4-gram SP, SA 10.5
25.06 wordpiece Trans. SP, SA 9.8 ¢

German: a high degree of grapheme-phoneme correspondence
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Experiments (Comparison with STOA)

Switchboard 300h
Model

H#params

LM

unit

Eval2000

RNN-T, 2021 [10] 57 RNN LM char 6.4 13.4 9.9
Conformer [9] 44.6 Trans. bpe 6.8 14.0 10.4 o
TDNN-F [11] - Trans.* triphone 7.2 14.4 10.8
TDNN-F [11] - Trans.** triphone 6.5 13.9 10.2 ¢
VGGBLSTM [2] 39.15 RNN LM monophone 8.8 17.4 [13.0]
Conformer 51.82 Trans. monophone 6.9 14.5 10.7 °
(This work) 51.85 Trans. wordpiece 7.2 14.8 11.1

* N-best rescoring, ** Iterative lattice rescoring

[2] “CAT: A CTC-CRF based ASR toolkit bridging the hybrid and the end-to-end approaches towards data efficiency and

low latency,” INTERSPEECH 2020.
[9] “Conformer: Convolution-augmented Transformer for Speech Recognition”, Interspeech 2020.
[10] “Advancing RNN transducer technology for speech recognition,” ICASSP 2021.

[11] “A paralleliz- able lattice rescoring strategy with neural language models,” ICASSP, 2021




Section Conclusion

* The CTC-CRF framework inherits the data-efficiency of the hybrid approach and
the simplicity of the end-to-end approach.

e CTC-CRF significantly outperforms regular CTC on a wide range of benchmarks,
and is on par with other state-of-the-art end-to-end models.

= English WSJ-80h, Switchboard-300h, Librispeech-1000h; Mandarin Aishell-170h; ...

* Flexibility

= Streaming ASR <- INTRESPEECH 2020

= Neural Architecture Search <- SLT 2021
Children Speech Recognition <- SLT 2021
Wordpieces, Conformer architectures
Multilingual and Crosslingual <- ASRU2021
s CUSIDE: streaming ASR <- INTERSPEECH 2022
= LODR: LM integration <- INTERSPEECH 2022

https://github.com/thu-spmi/cat -,



https://github.com/thu-spmi/cat

Content

|. Basics for end-to-end speech recognition (15*3=45 min)
1. Probabilistic graphical modeling (PGM) framework
2. Hybrid DNN-HMM and Connectionist Temporal Classification (CTC)

3. Conditional random fields and sequence discriminative training

Il. Improving end-to-end speech recognition (15*3=45 min) QA + break 15-min
1. Data-efficiency
—> 2. Multilingual and crosslingual ASR
3. Language Model Integration for Transducer based Speech Recognition

Ill. Open questions and future directions + QA (15 min)
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Section Content

1. Motivation
2.Related work
3.Method: JoinAP

4.Experiments

5.Conclusion

EEFEZF (Acoustic) FIEEIZFE (Phonology) , (BHSIEESEELES T

 Chengrui Zhu, Keyu An, Huahuan Zheng, Zhijian Ou. “Multilingual and Crosslingual
Speech Recognition using Phonological-Vector based Phone Embeddings”, ASRU 2021. gg¢



Motivation

* There are more than 7100 languages in the world, and most of them are
low-resourced languages.

* Multilingual speech recognition

= Training data from a number of languages (seen languages) are merged to train a
multilingual AM.

* Crosslingual speech recognition
= The target language is unseen in training the multilingual AM.
= In few-shot setting , the AM can be finetuned on limited target language data.
» In zero-shot setting , the AM is directly used without finetuning*.

* Suppose that text corpus from the target language are available.
Intuitively, the key to successful multilingual and crosslingual recognition is
to promote the information sharing in multilingual training
and maximize the knowledge transferring from the well trained multilingual model to the model
for recognizing the utterances in the new language.
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Phonological features

e Often phones are seen as being the “atoms”

of speech.

But it is now widely accepted in phonology
that phones are decomposable into smaller,
more fundamental units, sharable across all
languages, called phonological (distinctive)
features.

Describe phones by phonological features

= Vowels

* vowel height
 vowel backness

s Consonants

* Place of articulation
* Manner of articulation

Phonological feature

&

syllabic
sonorant
consonantal
continuant
delayed release
lateral

nasal

strident

voice

spread glottis
constricted glottis
anterior
coronal
distributed labial
labial

high

low

back

round

velaric

tense

long

hitone

hireg

I + O I

I + + I

A A

| + O |

1 O I O I

I I + + I

I + O I

e

oo ! o

+

0

0

0

0
0

e

I + O I

I 1 + 1 O I O I

oo 4

1 + 1 + + I I I + O I I + I + I I

oo ! o

I 1 + 1 O I

oo ! o

59



https://phoible.org/

* Steven Paul Moran, “Phonetics Information Base and Lexicon”, PhD Thesis, UofW, 2012.
* Release 2.0 from 2019 includes 3020 inventories that contain 3183 segment types found in 2186 distinct languages.

* In addition to phoneme inventories, PHOIBLE includes distinctive feature data for every phoneme in every language.

Inventory Mandarin Chinese (SPA 16) ¢

Segment list IPA chart

. Vowels
Consonants (Pulmonic)
_ , Front Central Back
Bilabial |Labiodental| Dental |Alveolar |Postalveolar|Retroflex| Palatal | Velar | Uvular [Pharyngeal | Glottal
. - T L L
Plosive p t k Close LN " u
Nasal m n
Trill . \
Close-mid ® E— < S
Tap or Flap '
Fricative f S s Z|c¢ X
Lateral Open_mid . l._ R ‘ R ®
fricative b '
Approximant _] u
Lateral 1 0 ) > $
approximant pen a




Phonological features: micro-decomposition of phones

* Like atoms could be split into nucleus and electrons, phones can be
expressed by phonological features.

IR Matter &= Speech
JT = Atoms = = Phones
TR ERARR EBloN=g e
Periodic table of elements IPA table
[FEFiz. BF B BI4FE
Nucleus, electrons Phonological features



Phonological features: promote information sharing

* Even language-specific phones are connected by using phonological features.

Spanish [talian

T O T | P Ty T 1 Sapapepeg 0,-,0,0

MM EEE s 2l WM MEEEEEE

€. +,+"a+7"'9"03+7'9"Oa'909'"9'9+,','9+a',0a0
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Related work

* Phonological features(PFs) have been applied in multilingual and crosslingual ASR

* Previous studies generally take a bottom-up approach,
and suffer from:

* The acoustic-to-PF extraction in a bottom-up way is itself
difficult.

* Do not provide a principled model to calculate the phone
probabilities for unseen phones from the new language
towards zero-shot crosslingual recognition.

Phone probabilities

t

Standard acoustic model

Feature concatenation, or
Model combination

Phonological feature posteriors
/I\voicing Thigh

Phonological feature extractor

T

Acoustic spectra
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From phonological features to phonological-vector

* Phonological-vector
= Encode each phonological feature by a 2-bit binary vector. (24PFs -> 48bits)

= Plus 3 bits to indicate <blk>, <spn>, <nsn>
= Phonological-vector: Total 51 bits
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Joining of Acoustics and Phonology (JoinAP)

e The JoinAP method

= DNN based acoustic feature extraction (bottom-up)
and phonology driven phone embedding (top-down)
are joined to calculate the logits.

* JoinAP-Linear

» Linear transformation of phonological-vector p; to define
the embedding vector for phone i:
e; = Apl (S ]RH

e JoinAP-Nonlinear

= Apply nonlinear transformation, multilayered neural networks:

e; = A,0(A1p;) € RY

Phone

y

Phonological transformation

Phone embedding e;

|

Logits: z;; = eiTht

f

DNN output h;

!

DNN based feature extractor

!

Acoustic spectra
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Experiments

* Train multilingual AM on German, French, Spanish and Polish.
* Zero-shot and few-shot crosslingual ASR on Polish and Mandarin.

word IPA symbol phonological feature
—>| Phonetisaurus G2P > PanPhone e

* Use CTC-CRF based ASR toolkit, CAT

* Acoustic model: 3 layer VGGBLSTM with 1024 hidden dim

* Adam optimizer: with an initial learning rate of 0.001, decreased to 1/10 until less than 0.00001
* Dropout 0.5

Language Corpora #Phones Train Dev  Test
German  CommonVoice 40 6394 247 25.1
French CommonVoice 57 465.2 219 23.0
Spanish ~ CommonVoice 30 2464 249 25.6
[talian Common Voice 33 89.3 19.7 20.8
Polish CommonVoice 46 93.2 52 6.1
Mandarin AISHELIL-1 96 150.9 18.1 10.0




Experiments

* Multilingual experiments

Language | Flat-Phone Flat-Phone Flat-Phone | JoinAP-Linear JoinAP-Linear | JoinAP-Nonlinear JoinAP-Nonlinear
monolingual | w/o finetuning  finetuning | w/o finetuning finetuning w/o finetuning finetuning
German 13.09 14.36 12.42 13.72 12.45 13.97 12.64
French 18.96 22.73 18.91 22.73 19.54 22.88 19.62
Spanish 15.11 13.93 13.06 13.93 13.19 14.10 13.26
[talian 24.57 25.97 21.77 25.85 21.70 24.06 20.29
Average 17.93 19.25 16.54 19.06 16.72 18.75 16.45

* Language-degree of a phone: how many languages a phone appears

Language-degree

4 3 2 1
Language
German 18 6 8 8
French 18 6 7 26
Spanish 18 4 1 7
[talian 18 5 4 6

On average, both JoinAP-Nonlinear and JoinAP-Linear perform better than Flat-Phone,
and JoinAP-Nonlinear is the strongest.




Experiments

* Crosslingual experiments

= Polish: = Mandarin:
#Finetune Flat-Phone JoinAP-Linear JoinAP-Nonlinear " #Finetune  Flat-Phone  JoinAP-Linear  JoinAP-Nonlinear
0 33.15 35.73 31.80 0 97.10 89.51 88.41
10 minutes 8.70 7.50 8.10 | hour 25.39 25.21 24.86

= Statistics about Polish and Mandarin:

Language #Phones #Unseen phones
Polish 46 18
Mandarin 96 79

On average, both JoinAP-Nonlinear and JoinAP-Linear perform better than Flat-Phone,
and JoinAP-Nonlinear is the strongest.
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t-SNE map of Polish phone embeddings

i

(@) Flat (b) JoinAP-Linear (c) JoinAP- Nonlinear
Consonants with the same manner of articulation; Consonants with the same place of articulation;
A e(King) - e(queen) ~ e(man) — e(woman)
man e(King)  e(man) - e(woman) + e(queen)
.“-H woman
o e Unvoiced - Voiced: 6([16])1“6([9]) = e([p]) — e([b])
king ‘”-h""A.. . . h h
queen Aspirated - Unaspirated: 6([p ]) — 6([[0]) — 8([k ]) — 8([%])
e
/ Li, et al., "Hierarchical Phone Recognition with Compositional Phonetics", INTERSPEECH, 2021. 63



Experiments

* t-SNE map of Polish phone embeddings

* Detailed explanation

Method Color Feature Phones
Alveolo-palatal zedt
Velar ngkxdg k' x
Green Alveolar dZtsndtrszl
Linear Retro.ﬂex sz dzts
Red Plosive xvx' Vizsfzs
Fricative gkpd Kp' bbtd
Yellow Close iuwii
Open/Open-mid aedd
Alveolo-palatal zedt
Green Velar ngkxg k' x
Alveolar ndtrszl
Nonlinear Affrlc.:ate dedts
Red Plosive xvx'zsf
Fricative pp'bb td
Close ijii
Yellow Open/Open-mid aefod
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Section Conclusion

In the multilingual and crosslingual experiments, JoinAP-Nonlinear generally
performs better than JoinAP-Linear and the traditional flat-phone method on
average. The improvements for target language depend on its data amount and
language-degree.

Our JoinAP method provides a principled, data-efficent approach to
multilingual and crosslingual speech recognition.

Promising directions: exploring DNN based phonological transformation, and
pretraining over increasing number of languages.



Content

|. Basics for end-to-end speech recognition (15*3=45 min)
1. Probabilistic graphical modeling (PGM) framework
2. Hybrid DNN-HMM and Connectionist Temporal Classification (CTC)

3. Conditional random fields and sequence discriminative training

Il. Improving end-to-end speech recognition (15*3=45 min) QA + break 15-min
1. Data-efficiency
2. Multilingual and crosslingual ASR
—> 3. Language Model Integration for Transducer based Speech Recognition
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“Data efficiency” in speech recognition:
towards utilizing the text-only data

>_ “h |I 7 s TTTEEEEEEEEEEEEEEEETEES \
|||||||| — —— “hello

e2e system
« End-to-end (e2e) speech recognition is “data hungry”, text-only data
whose performance relies on the amount of paired
speech-text data. P
paired data

« Text-only & audio-only data are more easily available, %

compared to paired ones (a.k.a. the labeled data).
audio-only data

- o e o e Em e EEm e Em M M e Em M e e Em E—
— e o e o e o e o e M e M e M o e o

How to utilize the text?

Language Model (LM) integration! S mmmmmmmooooo-oooo
Amount of available data.

[1] Li, Jinyu. "Recent Advances in End-to-End Automatic Speech Recognition.” arXiv preprint arXiv:2111.01690 (2021).
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LM integration in Transducer:
some Intuition and heuristic experience

X: speech data, Y: corresponding label sequence.
Hybrid model (e.g., DNN-HMM):

~

Y = arglglax [Pam(X|Y) Perm(Y)] C-

ASRZE S /

E2E model (e.g., RNNT, AED):

~ Pranet (Y[ X
Y = arg max Ran-r (VX

Y Pim(Y)

Pem(Y)

[1] A. Graves, “Sequence transduction with recurrent neural networks,” arXiv preprint arXiv:1211.3711, 2012.
[2] Z. Meng, and et al., “Internal language model estimation for domain-adaptive end-to-end speech recognition,” SLT 2021.
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Related work:
shallow fusion, density ratio and ILME

1. shallow fusion (SF):
Y* = a,rgixfnax (log Prant(Y'|X) + Arlog Perm(Y) + BlY])

2.1 density ratio (DR):

ILM is approximated via a separate NN LM trained with the same
linguistic information as RNN-T (transcript of the audio data).

2.2 ILME (Internal Language Model Estimation):
linear approximation J (gu, f;) ~ J (g4, 0) + J (0, f;)
-_— PILM(yu+1|yO:u) X €xXp (J(gu: 0))

P(@3|X7 Yo, - ayui_l)

1

[ Joint net ]

gu; ftg_
[ Predictor Encoder
Zere ou

yuz’—l ‘

[1] E.McDermott, and et al., “A density ratio approach to language model fusion in end-to-end automatic speech recognition,” ASRU 2019.

[2] Z. Meng, and et al., “Internal language model estimation for domain-adaptive end-to-end speech recognition,” SLT 2021.
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A brief summary of observation about the Predictor.

Table 1. Effect of limited context history [1].

1. The Predictor is commonly very shallow neural network. (e.g. 1x LSTM); Context 0 T 1 T2 4 e
. .. Ist-pass WER | 8.5 [ 74 | 6.6 | 6.6 | 6.6
2. The Predictor only makes use of limited context (Table 1); posterior cost | 34.6 | 5.6 | 5.2 | 47 | 46

3. The ILM estimated from Predictor performs poorly when evaluated as normal LM.

o e RNNTtest 130 Smaller prior cost and perplexity
+£ g0l T baTsesr | 120 denote better LM performance.
8 —e— HAT-train % 110 ‘
5 E100
E 70 ™ 90
peg 80
60 ! o o o <o o o <o o <
012 4 8 16 "2 28 4R AT
ep ochs Training Speech (K hours)
(a) Prior cost of estimated ILM from HAT [1]; (b) Perplexity of estimated ILM from ILME [2].
The “prior cost” measures the —log P(Y). A “normal” LM trained on the transcript has a perplexity of 30.1

[1] E. Variani, and et al, “Hybrid autoregressive transducer (HAT),” in ICASSP 2020.
[2] Z. Meng, and et al., “Internal language model estimation for domain-adaptive end-to-end speech recognition,” in SLT 2021. 79



Low Order Density Ratio (LODR)

( ) ( )

Our observation: conflict Density ratio:
The ILM should be a — Estimate the ILM via a

low order weak LM. separately train well-learned LM.

\ J/

<

Low Order Density ratio:
Estimate the ILM via 2-gram model.

In practice, we obtain the ILM as follows: I
1. Prepare the training corpus: we use the transcript only; [LOW Ordef]
2. Train a 2-gram LM on the corpus using KenLM with LM

some prunes if required”.

" The size of context could be different according to the granularity of the modeling units.

[1] https://github.com/kpu/kenlm
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Experiments: in-domain evaluation with large amount of
text corpus

Table 3. Performance of LM integration methods, measured by WER % on
LibriSpeech and CER % on WenetSpeech. The perplexity (PPL) of the ILM is

computed on the transcript of each dataset. “Rel %” measures the relative reduction
of WER (CER) compared to “No LM” setup.

- e = e = = o=

LibriSpeech
Method | ILM PPL Ao A1 dev test
o clean | other | clean other |_ iw_g - _Iiel Uf -
No LM - - - - 2.18 5.33 2.40 5.42 : 3.81 -
SF - - 0.625 1.0 1.82 | 4.06 1.96 442 1| 3.04 20.2
DR 24.72 -0.125 | 0.75 0.5 1.79 4.00 1.97 4.31 : 3.00 21.3
ILME 50.21 -0.125 | 0.75 1.0 1.78 3.99 1.92 435 1| 2.99 21.5
LODR 100.94 -0.125 | 0.75 0.75 1.83 4.00 1.94 4.34 '\ 3.01 21.0
WenetSpeech
Method | ILM PPL Ao A1 B dev test . ave. Rel %
net meeting |- —2_ |- __ _ _
No LM - - - - 11.14 12.75 20.88 : 14.05 -
SF - - 0.25 3.125 9.19 11.73 18.36 1| 12.37 12.0
DR 37.89 0.0 0.25 3.125 9.19 11.73 18.36 : 12.37 12.0
ILME 94.32 -0.125 | 0.375 3.0 9.10 11.56 1826 1| 12.25 12.8
LODR 79.33 -0.125 | 0.375 | 3.125 9.07 11.54 18.23 '\ 12.22 13.0

e

Size of extra corpus:

English: 800 million words
(9.4M words in transcript)

Chinese: 200 million chars
(17M chars in transcript)

p
All methods subtracting

ILM perform better than
the shallow fusion

kcons.istently.

~N
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Experiments: cross-domain evaluation and discussion

Table 4. Performance of LM integration methods evaluated on cross-domain scenarios.

LibriSpeech — Tedlium-2

Method | A Al b dev | test | avg. || Rel %
NolLM| - - - 11.67{11.41|11.51 | -
SF - 10.625| 1.5 [|10.26/10.05/10.13|| 12.0
DR |-0.125(0.625| 1.5 [[10.21]9.85: 9.99 || 13.2 .
ILME |-0.125 0.5 | 1.0 [[10.23| 9.87 110.01 || 13.0
LODR |-0.125|0.625| 1.5 |/10.25| 9.97 {10.08| 12.4 ;
WenetSpeech — AISHELL-1
Method | Ao Al g dev | test | avg. || Rel %
NolLM| - - - 6.32 | 7.22 | 6.63 -
SF - 0.5 |1.375|| 5.11 | 5.56 | 5.26 | 20.7 |
DR |-0.125| 0.5 |1.375]] 5.10 | 5.65 { 5.28 || 204 |
ILME [-0.125| 0.5 |1.125|| 499 | 555 5.18 || 219 |
LODR |-0.375(0.625|0.375|| 4.76 | 5.33 { 495 || 25.3 |

Size of extra corpus:
English (Tedlium-2):
2.2M words (9.4M words in transcript)

Chinese (AISHELL-1):
1.7M chars (17M chars in transcript)
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Librispeech (960 hours). Streaming encoder + stateless Transducer.

Decoding method A A test-clean | WERR | test-other | WERR
Modified beam search - - 2.73 - 7.15 -
+ SF 0.3 - 2.42 11.4% 6.46 9.7%
+ ILME 0.3 -0.05 2.36 13.6% 6.23 12.9%
+ LODR (bi-gram) 0.3 -0.16 2.28 16.5% 5.94 16.9%

Librispeech + Gigaspeech (10k hours). Non-streaming encoder + pruned & stateless Transducer.

Decoding method A Ay test-clean | WERR | test-other | WERR
Modified beam search - - 2.00 - 4.63 -
+ SF 0.3 - 1.96 2.0% 4.18 9.7%
+ ILME 0.3 -0.05 1.82 9.0% 4.10 11.4%
+ LODR (bi-gram) 0.4 -0.14 1.83 8.5% 4.03 13.0%

EK23L3e, LODRFRIILTE!

“Results are reported on icefall, a repo maintained by the K2 team.
[1] https://github.com/k2-fsa/k2
[2] https://github.com/k2-fsa/icefall




Conclusions

1.

We propose a LODR method, which uses low order and weak LM
as the estimated ILM for the original DR method, with the
observation that the ILM of Transducer indeed only captures
limited linguistic information.

. The LODR method is evaluated on both in-domain and cross-

domain scenarios, and compared with existing methods.

Our proposed LODR consistently outperforms the SF, and
performs better than the original DR in most tests with less extra
parameters introduced.

As compared to ILME, our LODR method has close performance
but avoids feeding the labels to the text encoder twice.

2022/12/24 85
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|. Basics for end-to-end speech recognition (15*3=45 min)

1. Probabilistic graphical modeling (PGM) framework
2. Hybrid DNN-HMM and Connectionist Temporal Classification (CTC)
3. Conditional random fields and sequence discriminative training
Il. Improving end-to-end speech recognition (15*3=45 min) QA + break 15-min
1. Data-efficiency
2. Multilingual and crosslingual ASR
3. Language Model Integration for Transducer based Speech Recognition

—> |II. Open questions and future directions + QA (15 min)
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“WER we are and WER we think we are”

“The conclusions are clear: we are definitely not where we think we are in terms of
WERs (Word Error Rates).”

ASR CCC SWBD CallHome
ASR1 179 11.62 17.69
ASR2 192 1145 18.6
ASR3 16.5 10.2 15.85

Table 1: WER [%] comparison on benchmarks

e Test: three different state-of-the-art commercial ASR solutions
e Call Center Conversations (CCC)

* The commercial ASR systems in our evaluation achieve nearly double the error rates
(reported in the literatures) on both HUB’05 evaluation subsets.

Szymanski, et al., "WER we are and WER we think we are", EMNLP 2020.
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The 6th Asian Conference on Pattern Recognition (ACPR2021) Tutorial

State-of-the-Art of End-to-End Speech Recognition

Zhijian Ou
Speech Processing and Machine Intelligence (SPMI) Lab, Tsinghua University
http://oa.ee.tsinghua.edu.cn/ouzhijian/
November 9, 2021
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IEEE ICASSP 2022

Il. EBMSs for language modeling
po(x)

I Basics for EBMs\

pe(hlx) = S pg(x, h)

Ill. EBMs for speech recognition IV. EBMs for semi-supervised
and natural language labeling natural language labeling

ICASSP2022 i#3ike: sEEtREIREHEIEEIESL
IR ch g A
HEAXZMEIRF2022FE5822B%FIEEES

ICASSP202289H IR S

SLBEMKN

Slides and video: http://oa.ee.tsinghua.edu.cn/~ouzhijian/news.htm
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